Author:
Bogen D K,Rabinowitz S A,Needleman A,McMahon T A,Abelmann W H
Abstract
An isotropic, initially spherical, membrane model of the infarcted ventricle satisfactorily predicts ventricular function in the infarcted heart when compared to clinical information and available ventricular models of higher complexity. Computations based on finite element solutions of this membrane model yield end-diastolic and end-systolic pressure-volume curves, from which ventricular function curves are calculated, for infarcts of varying size and material properties. These computations indicate a progressive degradation of cardiac performance with increasing infarct sizes such that normal cardiac outputs can be maintained with Frank-Starling compensation and increased heart rate for acute infarcts no larger than 41% of the ventricular surface. The relationship between infarct stiffness and cardiac function is found to be complex and dependent on both infarct size and end-diastolic pressure, although moderately stiff subacute infarcts are associated with better function than extensible acute infarcts. Also, calculations of extensions and stresses suggest considerable disruption of the border zone contraction pattern, as well as elevated border zone systolic stresses.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Reference34 articles.
1. Pathophysiology of Cardiogenic Shock
2. The acute hemodynamic effects of left ventricular aneurysm
3. Bogen DK (1977) The mechanical disadvantage of myocardial infarction: A model of the infarcted ventricle. Ph.D. thesis Harvard University
4. Do cardiac aneurysms blow out?
Cited by
223 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献