Tissue Plasminogen Activator Promotes Matrix Metalloproteinase-9 Upregulation After Focal Cerebral Ischemia

Author:

Tsuji Kiyoshi1,Aoki Toshiaki1,Tejima Emiri1,Arai Ken1,Lee Sun-Ryung1,Atochin Dmitriy N.1,Huang Paul L.1,Wang Xiaoying1,Montaner Joan1,Lo Eng H.1

Affiliation:

1. From the Neuroprotection Research Laboratory (K.T., T.A., E.T., K.A., S.-R.L., X.W., E.H.L.), Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass; Department of Neurosurgery (K.T.), Kinki University School of Medicine, Osaka-sayama, Japan; Cardiovascular Research Center and Department of Medicine (D.N.A., P.L.H.), Massachusetts General Hospital and Harvard Medical School, Charlestown, Mass; Department of Life...

Abstract

Background and Purpose— Thrombolytic therapy with tissue plasminogen activator (tPA) in ischemic stroke is limited by increased risks of cerebral hemorrhage and brain injury. In part, these phenomena may be related to neurovascular proteolysis mediated by matrix metalloproteinases (MMPs). Here, we used a combination of pharmacological and genetic approaches to show that tPA promotes MMP-9 levels in stroke in vivo. Methods— In the first experiment, spontaneously hypertensive rats were subjected to 3 hours of transient focal cerebral ischemia. The effects of tPA (10 mg/kg IV) on ischemic brain MMP-9 levels were assessed by zymography. In the second experiment, wild-type (WT) and tPA knockout mice were subjected to 2 hours of transient focal cerebral ischemia, and MMP-9 levels and brain edema during reperfusion were assessed. Phenotype rescue was performed by administering tPA to the tPA knockout mice. Results— In the first experiment, exogenous tPA did not change infarct size but amplified MMP-9 levels in ischemic rat brain at 24 hours. Coinfusion of the plasmin inhibitor tranexamic acid (300 mg/kg) did not ameliorate this effect, suggesting that it was independent of plasmin. In the second experiment, ischemic MMP-9 levels, infarct size, and brain edema in tPA knockouts were significantly lower than WT mice. Administration of exogenous tPA (10 mg/kg IV) did not alter infarction but reinstated the ischemic MMP-9 response back up to WT levels and correspondingly worsened edema. Conclusions— These data demonstrate that tPA upregulates brain MMP-9 levels in stroke in vivo, and suggest that combination therapies targeting MMPs may improve tPA therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3