Cerebral Capillary Endothelial Cell Mitogenesis and Morphogenesis Induced by Astrocytic Epoxyeicosatrienoic Acid

Author:

Zhang Chenyang1,Harder David R.1

Affiliation:

1. From the Cardiovascular Research Center, Department of Physiology, Medical College of Wisconsin, Milwaukee.

Abstract

Background and Purpose— Epoxyeicosatrienoic acids (EETs) are products of cytochrome P450 epoxygenation of arachidonic acid. We have previously demonstrated that astrocyte-conditioned medium induced mitogenesis in brain capillary endothelial cells. The goals of the present studies are to further define the mechanism through which this can occur and to confirm that EETs are derived from astrocytes, through which astrocytic activity can regulate cerebral angiogenesis in response to neuronal activation. Methods— Astrocytes and cerebral capillary endothelial cells in primary cultures were cocultured to examine the interaction of the 2 cell types. We used multiple immunohistochemical techniques to characterize the multicellular nature of the capillaries, which is not simply an artifact related to the culture conditions. The mitogenic effect of EETs was determined by 3 H-thymidine incorporation and cell proliferation assay. Endothelial tube formation was examined in vitro and in vivo with the use of a reconstituted basement membrane (Matrigel) assay. Results— In cocultures of astrocytes and capillary endothelium, we observed morphological changes in both cell types such that each assumed certain physiological characteristics, ie, endothelial networks and astrocytes with “footlike” projections as well as intermittent gap junctions forming within the endothelial cells. EETs from astrocytes as well as synthetic EETs promoted mitogenesis of endothelial cells, a process sensitive to inhibition of tyrosine kinase with genistein. Treatments with exogenous EETs were sufficient for endothelial cells to differentiate into capillary-like structures in culture as well as in vivo in a Matrigel matrix. Conclusions— The 2 major conclusions from these data are that astrocytes may play an important role in regulating angiogenesis in the brain and that cytochrome P450–derived EETs from astrocytes are mitogenic and angiogenic.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3