Prereperfusion Saline Infusion Into Ischemic Territory Reduces Inflammatory Injury After Transient Middle Cerebral Artery Occlusion in Rats

Author:

Ding Yuchuan1,Li Jie1,Rafols Josè A.1,Phillis John W.1,Diaz Fernando G.1

Affiliation:

1. From the Departments of Neurological Surgery (Y.D., J.L., F.G.D.), Anatomy and Cell Biology (J.A.R.), and Physiology (J.W.P.), Wayne State University School of Medicine, Detroit, Mich.

Abstract

Background and Purpose— In ischemic stroke, the ischemic crisis activates a cascade of events that are potentiated by reperfusion, eventually leading to cell death. The chief aim in this study was to investigate whether our new experimental model for stroke therapy, flushing the ischemic territory with saline before reperfusion, could minimize this damage by (1) reducing the inflammatory reaction and (2) improving regional microcirculation. Methods— Stroke in Sprague-Dawley rats (n=39) was induced by a 2-hour middle cerebral artery occlusion with the use of a novel intraluminal hollow filament. Before 48-hour reperfusion, 20 of the ischemic rats received 7 mL isotonic saline at 23°C or 37°C infused into the ischemic area through the filament. Regional cerebral blood flow in cortex supplied by the right middle cerebral artery was measured by laser-Doppler flowmetry during ischemia and reperfusion. Leukocyte infiltration, microvascular plugging, and infarct volume were compared with the use of hematoxylin and eosin staining. Expression of intercellular adhesion molecule 1 (ICAM-1) was determined by immunocytochemistry. Neurological deficits were evaluated. Results— After the prereperfusion infusion of saline, significantly ( P <0.001) improved cerebral blood flow (105±12% of baseline) was obtained up to 48 hours after reperfusion, compared with 45±7% at 24 hours and 25±3% at 48 hours after reperfusion without local saline infusion. Significant ( P <0.001) reductions in leukocyte infiltration (61%), vascular plugging (45%), infarct volume (approximately 65%), and neurological deficits were also produced. ICAM-1 expression in the infarct region was significantly ( P <0.05) minimized by 37%. Conclusions— The reduced brain infarct and neurological deficits may be attributed to adequate reperfusion and ameliorated inflammation induced by local prereperfusion infusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3