Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Modulates the Expression of Type VIII Collagen mRNA in Vascular Smooth Muscle Cells and Both Are Codistributed During Atherogenesis

Author:

Plenz Gabriele1,Reichenberg Stefan1,Koenig Carsten1,Rauterberg Jürgen1,Deng Mario C.1,Baba Hideo A.1,Robenek Horst1

Affiliation:

1. From the Institute for Arteriosclerosis Research, Division of Cell Biology and Ultrastructure Research (G.P., S.R., C.K., J.R., H.R.), and the Departments of Cardiothoracic Surgery (M.C.D.) and Pathology (H.A.B.), Münster, Germany.

Abstract

Abstract —The expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and type VIII collagen was studied in human arteries. GM-CSF and type VIII collagen were codistributed in all layers of the walls of nondiseased arteries and during early atherogenesis with up to type V lesions. The number of cells expressing both mRNAs increased during the development of advanced atherosclerotic lesions. Whereas type VIII collagen expression increased further in complicated lesions, GM-CSF was downregulated. During early atherogenesis smooth muscle cells (SMC) and endothelial cells were the principal GM-CSF and type VIII collagen mRNA-expressing cell types. In advanced lesions monocytes/macrophages also expressed the mRNAs. In complicated lesions the number of GM-CSF mRNA-expressing SMC was markedly reduced. In in vitro experiments transforming growth factor-β1, platelet-derived growth factor, and GM-CSF, but not basic fibroblast growth factor, stimulated the expression of type VIII collagen mRNA by SMC. GM-CSF transiently stimulated type VIII collagen transcription. Thus GM-CSF is a prominent component of the regulatory network influencing collagen metabolism during atherogenesis. By modulating the synthesis of type VIII collagen in SMC, GM-CSF may influence the course of plaque development and may govern processes such as cell movement, plaque stability, and thrombus organization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference41 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3