Effects of Intracellular Free Cholesterol Accumulation on Macrophage Viability

Author:

Kellner-Weibel G.1,Jerome W. G.1,Small D. M.1,Warner G. J.1,Stoltenborg J. K.1,Kearney M. A.1,Corjay M. H.1,Phillips M. C.1,Rothblat G. H.1

Affiliation:

1. From the Department of Biochemistry, Allegheny University of the Health Sciences, Philadelphia, Pa (G.K.-W., G.J.W., M.C.P., G.H.R.); the Department of Pathology, Bowman Gray School of Medicine, Winston-Salem, NC (W.G.J.); the Department of Biophysics, Boston University School of Medicine, Boston, Mass (D.M.S.); and the Dupont Merck Research Laboratories, Wilmington, Del (J.K.S., M.A.K., M.H.C.).

Abstract

Abstract —This study was designed to identify cellular responses associated with free cholesterol (FC) accumulation in model macrophage foam cells. Mouse peritoneal macrophages (MPMs) or J774 macrophages were loaded with cholesteryl esters using acetylated LDL and FC/phospholipid dispersions and were subsequently exposed to an acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor. This treatment produced a rapid accumulation of cellular FC. The FC that accumulated due to ACAT inhibition was more readily available for efflux to 2-hydroxypropyl-β-cyclodextrin (which removes cholesterol from the plasma membrane) than FC in untreated control cells. After a 3-hour exposure to an ACAT inhibitor, a significant increase in phospholipid synthesis was seen, followed by the leakage of LDH after 12 hours of treatment. We also observed, by electron and fluorescence microscopy, morphological indications of both apoptosis and necrosis in cells treated with an ACAT inhibitor. In addition, inhibition of ACAT for 48 hours resulted in the formation of FC crystals in MPMs but not in J774 cells. If compound 3β-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A), which modulates intracellular trafficking of cholesterol, was added together with the ACAT inhibitor, each of the metabolic changes elicited by the accumulation of excess FC was either diminished or eliminated. The protective affect of U18666A was not due to a decrease in cellular FC concentrations, because cells treated with an ACAT inhibitor accumulated similar amounts of FC in the presence or absence of U18666A. Thus, treatment with U18666A results in the sequestering of FC in a pool that prevents it from causing various responses to FC deposition in macrophages. The metabolic changes that were produced when these model foam cells were treated with the ACAT inhibitor parallel the pathological events that have been shown to occur in the developing atherosclerotic plaque.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3