Alterations in basal and serotonin-stimulated calcium permeability and vasoconstriction in atherosclerotic aorta.

Author:

Stepp D W1,Tulenko T N1

Affiliation:

1. Department of Physiology, Medical College of Pennsylvania, Philadelphia 19129.

Abstract

Hypersensitivity to vasoactive stimuli, a common finding in atherosclerotic arteries, is thought to play an important role in the pathology of arterial and coronary vasospasm and may be a factor in myocardial ischemia and infarction. While this phenomenon is well documented, the underlying mechanism is unknown. The present study used isometric force measurements coupled with 45Ca2+ and Fura 2-AM techniques in aortic smooth muscle to probe transmembrane calcium movements and cytosolic calcium levels in an attempt to determine their relation to altered vasomotion in a rabbit model of dietary atherosclerosis. Following 10 weeks of cholesterol feeding (2%), basal (unstimulated) calcium influx was augmented 1.5-fold in atherosclerotic segments with no change in basal calcium efflux. Serotonin-stimulated calcium uptake was increased 1.9-fold in atherosclerotic segments and was accompanied by a fivefold increase in serotonin vasoconstrictor sensitivity and a 1.4-fold increase in serotonin-stimulated calcium efflux. Endothelial denudation did not alter either force generation or 45Ca2+ movements in serotonin-stimulated segments. In arterial smooth muscle cells dispersed from atherosclerotic vessels, basal and serotonin-stimulated cytosolic calcium levels were augmented approximately 2.3-fold and twofold, respectively. These findings contribute to our understanding of the cellular defects in calcium metabolism, which may ultimately explain the cellular basis of serotonin hypersensitivity in atherosclerotic arteries and certain arterial vasospastic syndromes in this disease state.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3