Affiliation:
1. Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de recherches sur Les Lipoprotéines et l'Athérogénèse, Paris, France.
Abstract
In peripheral blood, native low-density lipoprotein (LDL) is a major carrier of acetylhydrolase, the enzyme that hydrolyzes the sn-2 acetate of PAF-acether, converting it to lyso PAF-acether. By controlling the level of PAF-acether, the acetylhydrolase may regulate the biologic effects of this potent inflammatory and thrombotic mediator. The biologic oxidation of LDL appears to underlie its atherogenicity. We report here that oxidative modification of LDL led to progressive loss of associated acetylhydrolase activity. Reductions of approximately 90% and 40% of acetylhydrolase activity occurred respectively in LDL oxidized for 24 hours by copper ions (2.5 mumol/L) in phosphate-buffered saline and in LDL incubated with human monocyte-like THP1 cells in Ham's F-10 medium. Acetylhydrolase activity decreased as a function of the degree of LDL oxidation and was correlated with an increase in net negative charge and in the content of thiobarbituric acid-reactive substances (r = -.94 and r = -.88, respectively; P < or = .001). The acetylhydrolase of mildly oxidized LDL displayed a similar Km for PAF-acether compared with native LDL, whereas its Vmax was lower. Thus, acetylhydrolase conserved its affinity for PAF-acether, whereas a nondefined and noncompetitive inhibitor, apparently produced during oxidation, might account for the observed loss in enzymatic activity. Acetylhydrolase activity was totally recovered in LDL modified by both acetylation and malondialdehyde.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献