Endothelin-1 Enhances Plasminogen Activator Inhibitor-1 Production by Human Brain Endothelial Cells via Protein Kinase C-Dependent Pathway

Author:

Zidovetzki Raphael1,Wang Jin-Lin1,Kim Jeong A.1,Chen Peijia1,Fisher Mark1,Hofman Florence M.1

Affiliation:

1. From the Departments of Biology and Neuroscience (R.Z.), University of California, Riverside; and Departments of Pathology (J.-L.W., P.C., F.M.H.) and Neurology (J.A.K., M.F.), University of Southern California School of Medicine, Los Angeles.

Abstract

Abstract —The effects of endothelin-1 (ET-1) on the production of plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (t-PA) by human brain-derived endothelial cells in culture were studied. At 100 nmol/L, ET-1 increased PAI-1 production by 88±6% within 72 hours, and increased PAI-1 mRNA expression within 1 hour of stimulation; there was no significant effect on t-PA production. PAI-1 activity was also examined and found to increase with ET-1 treatment. Suboptimal concentrations of ET-1 and tumor necrosis factor-α (TNF-α) acted synergistically to increase PAI-1 production. ET-1 activated protein kinase C and cAMP-dependent protein kinase pathways within 3 to 5 minutes of treatment, with the peak at 10 minutes. Activation of protein kinase C by phorbol-12-myristate-13-acetate (PMA) resulted in increased PAI-1 production, whereas activation of the cAMP-dependent protein kinase by forskolin or dibutyryl cAMP (dBu-cAMP) significantly decreased PAI-1 production. However, simultaneous activation of protein kinase C by PMA and cAMP-dependent protein kinase by dBu-cAMP only slightly attenuated PMA-induced PAI-1 increase. Inhibition of protein kinase C by GF-109213X abolished the effects of ET-1. These results demonstrate that ET-1 and TNF-α function synergistically to induce procoagulant activity of brain endothelial cells in a process that involves a protein kinase C-dependent pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3