Role of Macrophage Glycosaminoglycans in the Cellular Catabolism of Oxidized LDL by Macrophages

Author:

Kaplan Marielle1,Williams Kevin Jon1,Mandel Hanna1,Aviram Michael1

Affiliation:

1. From the Lipid Research Laboratory, The Bruce Rappaport Faculty of Medicine, Technion, the Rappaport Family Institute for Research in the Medical Sciences, and Rambam Medical Center, Haifa, Israel (M.K., H.M., M.A.); and the Dorrance Hamilton Research Laboratories, Division of Endocrinology, Diabetes & Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pa (K.J.W.).

Abstract

Abstract —Macrophage binding sites for oxidized LDL (Ox-LDL) include class A scavenger receptors (SR-As), the CD-36 molecule, and an additional but hitherto unidentified binding site. Because cell-surface glycosaminoglycans (GAGs) were previously shown to be involved in the cellular uptake of native LDL and lipoprotein(a), several strategies to assess the participation of heparan sulfate (HS) and chondroitin sulfate (CS) in macrophage catabolism of Ox-LDL were used. First, incubation of J-774 A.1 macrophage-like cells with either heparinase or chondroitinase, or with both enzymes together, reduced the binding, uptake, and degradation of 125 I–Ox-LDL by 20% to 45%, in comparison with control nontreated cells, while catabolism of 125 I-labeled acetylated LDL (Ac-LDL) and native LDL were unaffected. Second, the proteoglycan (PG) cellular content was increased by cell enrichment with exogenous GAGs or by using human monocyte-derived macrophages from two patients with Sanfilippo mucopolysaccharidosis, which are characterized by cellular HS accumulation. In these macrophages, cellular uptake of 125 I–Ox-LDL increased, while catabolism of 125 I–Ac-LDL and native LDL were unaffected. Experiments using conditioned media from control, heparinase-digested, or chondroitinase-digested macrophages indicated that neither secreted GAGs nor released digestion products played any role in Ox-LDL catabolism. To evaluate potential interactions between cell-surface GAGs and known receptors for Ox-LDL, we used excess unlabeled Ac-LDL to block SR-As or anti–CD-36 antibodies to block CD-36, and then examined the catabolism of 125 I–Ox-LDL by GAG-enriched or -depleted macrophages. Both excess unlabeled Ac-LDL and anti–CD-36 antibodies reduced 125 I–Ox-LDL catabolism, but only excess unlabeled Ac-LDL completely abolished the increase in 125 I–Ox-LDL catabolism on GAG enrichment of the cells, indicating a cooperation between exogenous GAGs and cell-surface SR-As in the catabolism of OX-LDL. Moreover, the addition of GAGases to macrophages that were preincubated with anti–CD-36 antibodies and excess Ac-LDL further reduced macrophage degradation of Ox-LDL in comparison with cells that were pretreated only with anti–CD-36 antibodies and Ac-LDL, indicating a more complex role for endogenous GAGs. Overall, these studies demonstrate a substantial contribution of macrophage-associated GAGs in the catabolism of Ox-LDL, which is mediated in part by a cooperation between GAGs and cell-surface SR-As.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3