β-Glycerophosphate Accelerates Calcification in Cultured Bovine Vascular Smooth Muscle Cells

Author:

Shioi Atsushi1,Nishizawa Yoshiki1,Jono Shuichi1,Koyama Hidenori1,Hosoi Masayuki1,Morii Hirotoshi1

Affiliation:

1. From the Second Department of Internal Medicine, Osaka City University Medical School, Japan.

Abstract

Abstract Calcification is a common feature of advanced atherosclerotic lesions and is being reemphasized as a clinically significant element of vascular disease. However, the scarcity of in vitro models of vascular calcification preclude studying its molecular and cellular mechanism. In the present study, we describe an in vitro calcification system in which diffuse calcification can be induced by culturing bovine vascular smooth muscle cells (BVSMC) in the presence of β-glycerophosphate, ascorbic acid, and insulin in a manner analogous to in vitro mineralization by osteoblasts. Calcification was confirmed by von Kossa staining and 45 Ca accumulation. Factor analysis revealed that β-glycerophosphate is the most important factor for this calcification process, suggesting that alkaline phosphatase (ALP) may be involved. As predicted, high levels of ALP expression were detected by ALP assay and Northern blot analysis. Functional significance of ALP was confirmed by demonstrating that levamisole, a specific inhibitor of ALP, inhibited BVSMC calcification in a dose-dependent manner. Bisphosphonates such as etidronate and pamidronate potently inhibited BVSMC calcification, suggesting that hydroxyapatite formation may be involved. Importantly, expression of osteopontin mRNA was dramatically increased in calcified BVSMC compared with uncalcified control cells. These data suggest that β-glycerophosphate can induce diffuse calcification by an ALP–dependent mechanism and that this in vitro calcification system is useful for analyzing the molecular and cellular mechanisms of vascular calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3