Heterogeneity of Endothelial Cells

Author:

Garlanda Cecilia1,Dejana Elisabetta1

Affiliation:

1. From the Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy.

Abstract

Abstract During embryonic development, endothelial cells differentiate from a common precursor called angioblast and acquire organ-specific properties. One of the important determinants of endothelial cell differentiation is the local environment, and especially the interaction with surrounding cells. This interaction may occur through the release of soluble cytokines, cell-to-cell adhesion and communication, and the synthesis of matrix proteins on which the endothelium adheres and grows. The acquisition and maintenance of specialized properties by endothelial cells is important in the functional homeostasis of the different organs. For instance, in the brain, alteration of the blood-brain barrier properties may have important consequences on brain functional integrity. One of the major limitations to the study of endothelial cell heterogeneity is the fact that these cells are still difficult to isolate and culture from the microcirculation of different organs, and once in culture, they tend to lose their specialized properties. This finding suggests that we have to develop new culture systems, which possibly include coculture with other cell types. An important issue is to develop tools that can help in recognizing endothelial cells and their differentiated phenotype both in vivo and in tissue culture. In this review we give a short overview of the differentiated properties of the endothelium, considering a few examples of highly specialized endothelial cells, such as the brain or bone marrow microcirculation or high endothelial venules. We made a particular effort to list the most common markers of endothelial cell phenotypes. These molecules and related antibodies may be valuable tools for endothelial cell isolation and characterization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 423 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3