Abnormal composition of hypertriglyceridemic very low density lipoprotein determines abnormal cell metabolism.

Author:

Sehayek E1,Eisenberg S1

Affiliation:

1. Department of Medicine B, Hadassah University Hospital, Jerusalem, Israel.

Abstract

The metabolism of very low density lipoprotein (VLDL) from normolipemic (NTG) subjects, hypertriglyceridemic (HTG) subjects, and hypertriglyceridemic subjects treated with bezafibrate (BZ) was studied in cultured human skin fibroblasts. The binding, cell association, and proteolytic degradation of 125I-labeled lipoproteins and the capacity to regulate cellular sterol synthesis was determined with and without maximal stimulation of the lipoprotein by exogenous recombinant or plasmatic apolipoprotein (apo) E-3. The VLDL was separated into three density subfractions: I, II, and III. Multiple differences between HTG and NTG lipoproteins were found, which all reverted toward normal with therapy. Even in the presence of an optimal concentration of apo E-3, HTG-VLDL demonstrated 100% to 200% higher metabolic activities, indicating a better association or a better biological expression of apo E-3 at the surface of the lipoprotein. There was a strong and linear relationship between the cholesterol ester/protein ratios of the different VLDLs and their proteolytic degradations by the cells (r = 0.95). Thus, the composition/structure alterations of VLDL appear to determine their apo E-3-dependent cellular catabolism. In addition, HTG-VLDLs not enriched with apo E-3 exhibited a capacity to down-regulate cellular sterol synthesis independently of their uptake and degradation by the cells. This abnormality appeared to reflect the ability of the VLDL to donate cholesterol to the cells and was not observed in receptor-negative cells. Thus, HTG-VLDL is much more capable than NTG-VLDL of introducing cholesterol to cells by at least two mechanisms: 1) accelerated uptake and degradation and 2) direct transfer of cholesterol to the cells. Both processes are potentially atherogenic and are reversible when triglyceride-lowering therapy is instituted.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3