Interaction Between BTBR and C57BL/6J Genomes Produces an Insulin Resistance Syndrome in (BTBR × C57BL/6J) F 1 Mice

Author:

Ranheim Trine1,Dumke Charles1,Schueler Kathryn L.1,Cartee Gregory D.1,Attie Alan D.1

Affiliation:

1. From Departments of Biochemistry and Comparative Biosciences (T.R., K.L.S., A.D.A.) and Biodynamics Laboratory (C.D.,G.D.C.), University of Wisconsin-Madison, Madison, WI 53706.

Abstract

Abstract Insulin resistance is a common syndrome that often precedes the development of noninsulin-dependent diabetes mellitus (NIDDM). Both diet and genetic factors are associated with insulin resistance. BTBR and C57BL/6J (B6) mice have normal insulin responsiveness and normal fasting plasma insulin levels. However, a cross between these two strains yielded male offspring with severe insulin resistance. Surprisingly, on a basal diet (6.5% fat), the insulin resistance was not associated with fasting hyperinsulinemia. However, a 15% fat diet produced significant hyperinsulinemia in the male mice (twofold at 10 weeks; P <.05). At 10 weeks of age, visceral fat contributed approximately 4.3% of the total body weight in the males versus 1.8% in females. In the males, levels of plasma triacylglycerol and total cholesterol increased 40% and 30%, respectively, compared to females. Plasma free fatty acid concentrations were unchanged. Oral glucose tolerance tests revealed significant levels of hyperglycemia and hyperinsulinemia 15 to 90 minutes after oral glucose administration in the male mice. This was particularly dramatic in males on a 15% fat diet. Glucose transport was examined in skeletal muscles in (BTBR×B6)F 1 mice. In the nonhyperinsulinemic animals (females), insulin stimulated 2-deoxyglucose transport 3.5-fold in the soleus and 2.8-fold in the extensor digitorum longus muscles. By contrast, glucose transport was not stimulated in the hyperinsulinemic male mice. Hypoxia stimulates glucose transport through an insulin-independent mechanism. This is known to involve the translocation of GLUT4 from an intracellular pool to the plasma membrane. In the insulin-resistant male mice, hypoxia induced glucose transport as effectively as it did in the insulin-responsive mice. Thus, defective glucose transport in the (BTBR×B6)F 1 mice is specific for insulin-stimulated glucose transport. This is similar to what has been observed in muscles taken from obese NIDDM patients. These animals represent an excellent genetic model for studying insulin resistance and investigating the transition from insulin resistance in the absence of hyperinsulinemia to insulin resistance with hyperinsulinemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3