Effects of 26-Aminocholesterol, 27-Hydroxycholesterol, and 25-Hydroxycholesterol on Proliferation and Cholesterol Homeostasis in Arterial Myocytes

Author:

Corsini A.1,Verri D.1,Raiteri M.1,Quarato P.1,Paoletti R.1,Fumagalli R.1

Affiliation:

1. From the Institute of Pharmacological Sciences, University of Milan, Milan, Italy.

Abstract

Abstract The major relation existing between cell growth and cholesterol homeostasis prompted us to investigate the effect of 26-aminocholesterol (26-NH 2 ), 27-hydroxycholesterol (27-OH), and 25-hydroxycholesterol (25-OH) on these cellular events. To test this relation, we incubated human and rat arterial myocytes with the sterols for 72 hours. All the tested compounds (0.5 to 7.5 μmol/L) inhibited rat and human myocyte proliferation and cholesterol biosynthesis in a dose-dependent manner. 26-NH 2 was more potent than oxysterols in inhibiting human myocyte proliferation but equieffective in rat cells; 27-OH and 25-OH displayed similar activity in both cell lines. Inhibition of nuclear incorporation of thymidine in rat myocytes is consistent with decreased cell count. The antiproliferative effect of the tested sterols was reversible. The high inhibition (80%) of cholesterol biosynthesis necessary to induce a decrease in myocyte proliferation suggests a causal relation between the cholesterol synthetic pathway and these cellular processes. In addition, all the tested sterols were able to inhibit hydroxymethyl glutaryl–coenzyme A reductase activity in intact myocytes but not in cell-free extracts. The finding that 26-NH 2 but not 27-OH or 25-OH does not suppress LDL receptor activity in either human or rat myocytes supports the achievement of selectivity over the coordinately regulated LDL receptor gene. The ability of 26-NH 2 to interfere with myocyte proliferation and cholesterol synthesis without affecting the LDL receptor pathway confers at least in vitro a pharmacological interest on the compound in the process of atherogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3