Oxidation of beta-very low density lipoprotein by endothelial cells enhances its metabolism by smooth muscle cells in culture.

Author:

Horrigan S1,Campbell J H1,Campbell G R1

Affiliation:

1. Cell Biology Laboratory, Baker Medical Research Institute, Prahran, Australia.

Abstract

We have previously shown that beta-very low density lipoprotein (beta-VLDL) incubated with bovine aortic endothelial cells (ECs) is bound and internalized more readily by cultured rabbit aortic smooth muscle cells (SMCs) than is beta-VLDL incubated in the absence of ECs, resulting in enhanced accumulation of cholesterol. To investigate the mechanism by which this occurs, beta-VLDL from hypercholesterolemic rabbit serum was incubated with cultured bovine aortic ECs. This resulted in the formation of thiobarbituric acid (TBA)-reactive material indicating extensive lipid peroxidation. The formation of TBA-reactive material, the increased metabolism of beta-VLDL by rabbit aortic SMCs, and the increased accumulation of cholesterol were prevented by superoxide dismutase, EDTA, several antioxidants, and, to a lesser extent, by 5,8,11,14-eicosatetraynoic acid, but not by acetylsalicylic acid, suggesting that potential oxidizing agents were the superoxide anion, metal ions, and lipoxygenase derivatives, but not cyclooxygenase derivatives. The percentage composition of phospholipid, protein, triglyceride, and free and esterified cholesterol of EC-modified beta-VLDL did not differ significantly from the unmodified lipoprotein. Displacement studies showed that only part of the interaction of both EC-beta-VLDL and unmodified beta-VLDL occurred through the B/E receptor and that the EC-beta-VLDL displaced 125I-beta-VLDL to a greater extent than did unmodified beta-VLDL. This indicated that the EC-beta-VLDL interacted more strongly with receptors on SMCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3