Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque.

Author:

Rapp J H1,Lespine A1,Hamilton R L1,Colyvas N1,Chaumeton A H1,Tweedie-Hardman J1,Kotite L1,Kunitake S T1,Havel R J1,Kane J P1

Affiliation:

1. Cardiovascular Research Institute, University of California, San Francisco.

Abstract

We isolated and characterized immunoreactive apolipoprotein B (apoB)-containing lipoproteins from human atherosclerotic plaque and plasma to determine whether very-low-density lipoprotein (VLDL) can enter and become incorporated into the atherosclerotic lesion and how plaque apoB-containing lipoproteins differ from apoB-containing lipoproteins isolated from plasma. Atherosclerotic plaques were obtained during aortic surgery and processed immediately. Lipoproteins were extracted from minced plaque in a buffered saline solution (extract A). In selected cases a second extraction was done after plaque was incubated with collagenase (extract B). Lipoproteins were then isolated from the extracts by anti-apoB immunosorption and separated into VLDL + intermediate-density lipoprotein (IDL) (d < 1.019 g/mL) and low-density lipoprotein (LDL) (1.019 < d < 1.070 g/mL) fractions by ultracentrifugation. The VLDL + IDL fractions from plaque contained more than one third of the total apoB-associated lipoprotein cholesterol in both extracts A and B. The lipid composition of VLDL + IDL in both extracts was related to that of plasma VLDL + IDL. By electron microscopy mean particle diameters of VLDL + IDL from extracts A and B were 9% and 23%, respectively, greater than VLDL + IDL diameters from plasma. Mean diameters of LDL from extracts A and B were 11% and 31% greater than LDL diameters from plasma. The apoE-apoB ratio of extract A VLDL + IDL was nearly twice that of plasma VLDL + IDL and severalfold higher than that of extract A LDL. Immunoblots of both VLDL + IDL and LDL from extract A demonstrated minimal fragmentation of apoB.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3