Production of Angiotensin II by Homogeneous Cultures of Vascular Smooth Muscle Cells From Spontaneously Hypertensive Rats

Author:

Fukuda Noboru1,Satoh Chikara1,Hu Wen-Yang1,Soma Masayoshi1,Kubo Atsushi1,Kishioka Hirobumi1,Watanabe Yoshiyasu1,Izumi Yoichi1,Kanmatsuse Katsuo1

Affiliation:

1. From the Second Department of Internal Medicine, Nihon University School of Medicine, Tokyo 173, Japan.

Abstract

Abstract —Production of angiotensin II (Ang II) in spontaneously hypertensive rats (SHR)-derived vascular smooth muscle cells (VSMC) has now been investigated. A nonpeptide antagonist (CV-11974) of Ang II type 1 receptors inhibited basal DNA synthesis in VSMC from SHR, but it had no effect on cells from Wistar-Kyoto (WKY) rats. Ang II-like immunoreactivity, determined by radioimmunoassay after HPLC, was readily detected in conditioned medium and extracts of SHR-derived VSMC, whereas it was virtually undetectable in VSMC from WKY rats. Isoproterenol increased the amount of Ang II-like immunoreactivity in conditioned medium and extracts of SHR-derived VSMC, whereas the angiotensin-converting enzyme inhibitor delapril significantly reduced the amount of Ang II-like immunoreactivity in conditioned medium and extracts of these cells. Reverse transcription-polymerase chain reaction analysis revealed that the abundance of mRNAs encoding angiotensinogen, cathepsin D, and angiotensin-converting enzyme was greater in VSMC from SHR than in cells from WKY rats. The abundance of cathepsin D protein by Western blotting was greater in VSMC from SHR than in cells from WKY rats. Ang I-generating and acid protease activities were detected in VSMC from SHR, but not in cells from WKY rats. These results suggest that SHR-derived VSMC generate Ang II with increases in angiotensinogen, cathepsin D, and angiotensin-converting enzyme, which contribute to the basal growth. Production of Ang II by homogeneous cultures of VSMC is considered as a new mechanism of hypertensive vascular disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3