Catestatin Protects Against Diastolic Dysfunction by Attenuating Mitochondrial Reactive Oxygen Species Generation

Author:

Qiu Zeping12ORCID,Fan Yingze12ORCID,Wang Zhiyan12ORCID,Huang Fanyi12ORCID,Li Zhuojin12,Sun Zhihong12ORCID,Hua Sha23ORCID,Jin Wei123ORCID,Chen Yanjia12ORCID

Affiliation:

1. Department of Cardiovascular Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai People’s Republic of China

2. Institute of Cardiovascular Diseases Shanghai Jiao Tong University School of Medicine Shanghai People’s Republic of China

3. Heart Failure Center, Ruijin Hospital, & Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China

Abstract

Background Catestatin has been reported as a pleiotropic cardioprotective peptide. Heart failure with preserved ejection fraction (HFpEF) was considered a heterogeneous syndrome with a complex cause. We sought to investigate the role of catestatin in HFpEF and diastolic dysfunction. METHODS AND RESULTS Administration of recombinant catestatin (1.5 mg/kg/d) improved diastolic dysfunction and left ventricular chamber stiffness in transverse aortic constriction mice with deoxycorticosterone acetate pellet implantation, as reflected by Doppler tissue imaging and pressure‐volume loop catheter. Less cardiac hypertrophy and myocardial fibrosis was observed, and transcriptomic analysis revealed downregulation of mitochondrial electron transport chain components after catestatin treatment. Catestatin reversed mitochondrial structural and respiratory chain component abnormality, decreased mitochondrial proton leak, and reactive oxygen species generation in myocardium. Excessive oxidative stress induced by Ru360 abolished catestatin treatment effects on HFpEF‐like cardiomyocytes in vitro, indicating the beneficial role of catestatin in HFpEF as a mitochondrial ETC modulator. The serum concentration of catestatin was tested among 81 patients with HFpEF and 76 non–heart failure controls. Compared with control subjects, serum catestatin concentration was higher in patients with HFpEF and positively correlated with E velocity to mitral annular e′ velocity ratio, indicating a feedback compensation role of catestatin in HFpEF. Conclusions Catestatin protects against diastolic dysfunction in HFpEF through attenuating mitochondrial electron transport chain–derived reactive oxygen species generation. Serum catestatin concentration is elevated in patients with HFpEF, probably as a relatively insufficient but self‐compensatory mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3