Affiliation:
1. Department of Cardiovascular Medicine Mayo Clinic Rochester MN USA
2. Division of Cardiovascular Medicine Tsuchiura Kyodo General Hospital Ibaraki Japan
3. Division of Clinical Trials and Biostatistics Mayo Clinic Rochester MN USA
4. Division of Nephrology and Hypertension Mayo Clinic Rochester MN USA
Abstract
Background
Recent studies have indicated high rates of future major adverse cardiovascular events in patients with Takotsubo cardiomyopathy (TC), but there is no well‐established tool for risk stratification. This study sought to evaluate the prognostic value of several artificial intelligence‐augmented ECG (AI‐ECG) algorithms in patients with TC.
Methods and Results
This study examined consecutive patients in the prospective and observational Mayo Clinic Takotsubo syndrome registry. Several previously validated AI‐ECG algorithms were used for the estimation of ECG‐ age, probability of low ejection fraction, and probability of atrial fibrillation. Multivariable models were constructed to evaluate the association of AI‐ECG and other clinical characteristics with major adverse cardiac events, defined as cardiovascular death, recurrence of TC, nonfatal myocardial infarction, hospitalization for congestive heart failure, and stroke. In the final analysis, 305 patients with TC were studied over a median follow‐up of 4.8 years. Patients with future major adverse cardiac events were more likely to be older, have a history of hypertension, congestive heart failure, worse renal function, as well as high‐risk AI‐ECG findings compared with those without. Multivariable Cox proportional hazards analysis indicated that the presence of 2 or 3 high‐risk findings detected by AI‐ECG remained a significant predictor of major adverse cardiac events in patients with TC after adjustment by conventional risk factors (hazard ratio, 4.419 [95% CI, 1.833–10.66],
P
=0.001).
Conclusions
The combined use of AI‐ECG algorithms derived from a single 12‐lead ECG might detect subtle underlying patterns associated with worse outcomes in patients with TC. This approach might be beneficial for stratifying high‐risk patients with TC.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献