Age‐Associated Changes in Endothelial Transcriptome and Epigenetic Landscapes Correlate With Elevated Risk of Cerebral Microbleeds

Author:

Mohan Kshitij12ORCID,Gasparoni Gilles3ORCID,Salhab Abdulrahman3ORCID,Orlich Michael M.12ORCID,Geffers Robert4ORCID,Hoffmann Steve5,Adams Ralf H.67,Walter Jörn3ORCID,Nordheim Alfred152

Affiliation:

1. Interfaculty Institute of Cell Biology University of Tübingen Tübingen Germany

2. International Max Planck Research School “From Molecules to Organisms” Tübingen Germany

3. Department of Genetics University of Saarland Saarbrücken Germany

4. Genome Analytics Helmholtz Centre for Infection Research Braunschweig Germany

5. Leibniz Institute on Aging Fritz Lipmann Institute Jena Germany

6. Department of Tissue Morphogenesis Max Planck Institute for Molecular Biomedicine Münster Germany

7. Faculty of Medicine University of Münster Münster Germany

Abstract

Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood‐brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood‐brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age‐associated changes in gene expression. The study reveals age‐dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood‐brain barrier and vascular integrity. We also investigated age‐dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age‐dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age‐dependent downregulation of the Aplnr gene along with age‐dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood‐brain barrier and vascular integrity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3