Unraveling Mechanisms of Cryptogenic Stroke at the Genetic Level: A Systematic Literature Review

Author:

Ernst Johanna1ORCID,Ehrenreich Hannelore2,Weissenborn Karin1ORCID,Grosse Gerrit M.1ORCID

Affiliation:

1. Department of Neurology Hannover Medical School Hannover Germany

2. Clinical Neuroscience Max Planck Institute for Multidisciplinary Sciences Göttingen Germany

Abstract

Background A substantial proportion of ischemic strokes remain cryptogenic, which has important implications for secondary prevention. Identifying genetic variants related to mechanisms of stroke causes may provide a chance to clarify the actual causes of cryptogenic strokes. Methods and Results In a 2‐step process, 2 investigators independently and systematically screened studies that reported genetic variants in regard to stroke causes that were published between January 1991 and April 2021. Studies on monogenetic disorders, investigation of vascular risk factors as the primary end point, reviews, meta‐analyses, and studies not written in English were excluded. We extracted information on study types, ancestries, corresponding single nucleotide polymorphisms, and sample and effect sizes. There were 937 studies screened, and 233 were eligible. We identified 35 single nucleotide polymorphisms and allele variants that were associated with an overlap between cryptogenic strokes and another defined cause. Conclusions Associations of single variants with an overlap between cryptogenic stroke and another defined cause were limited to a few polymorphisms. A limitation of all studies is a low granularity of clinical data, which is of major importance in a complex disease such as stroke. Deep phenotyping is in supposed contradiction with large sample sizes but needed for genome‐wide analyses. Future studies should attempt to address this restriction to advance the promising approach of elucidating the cause of stroke at the genetic level. Especially in a highly heterogenous disease such as ischemic stroke, genetics are promising to establish a personalized approach in diagnostics and treatment in the sense of precision medicine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3