Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosinetriphosphatase activities.

Author:

Tada M,Kirchberger M A,Iorio J M,Katz A M

Abstract

A plasma membrane preparation purified from guinea pig ventricles without the use of high concentrations of detergents or structure-disrupting salts was used to compare the mechanisms of controlling sodium, potassium-activated adenosinetriphosphatase (Na, K-ATPase) and adenylate cyclase activities. The basal ATPase activity of 4-6 mu moles P1/hour mg-1 protein, measured in 120 mM NaC1 or KC1, was approximately doubled in 100 mM NaC1 plus 20 mM KC1. This increment, the Na, K-ATPase, was abolished by 10-5M ouabain, the K1 for ouabain being approximately 3 X 10-7M. 1-Epinephrine had no effect on Na, K-ATPase, but NaF was inhibitory. Adenylate cyclase, which had a basal activity of approximately 50% by NaC1 or KC1 alone at concentrations up to 0.2M. There was no additional stimulation of adenylate cyclase activity when na+ K+ included together. Both 1-epinephrine and NaF cause significant stimulation of adenylate cyclase, but neither basal nor activated cyclic AMP PRODUCTION WAS INFLUENCED BY OUABAIN. Half-maximal stimulation was seen at approximately 5 X 10-6M 1-epinephrine. Both the catecholamine and NaF increased the V-max ofcardiac plasma membrane adenylate cyclase without significantly influencing Km. Increasing Ca2+ in the range between 10-7 and 10-3M inhibited basal, 1-epinephrine-stimulated, and NaF-stimulated activities. Basal rates of cyclic AMP production were more sensitive to Ca2+ than was 1-epinephrine stimulation was increased from approximately 60% in 0.5 mM EGTA to approximately 150% in 10-7M Ca2+ and 400% in 10-5M Ca2+. The inhibitory effect of Ca2+ on adenylate cyclase activity may represent a negative feed back mechanism by which elevation of intracellular Ca2+ concentration lowers cellular levels of cyclic AMP and thus reduces Ca2+ influx into the myocardium.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3