Glass Microelectrode Studies on Intramural Papillary Muscle Cells

Author:

SOLBERG LLOYD E.1,SINGER DONALD H.1,TEN EICK ROBERT E.1,DUFFIN EDWIN G.1

Affiliation:

1. Departments of Pharmacology and Medicine and the Reingold Electrocardiographic Center, Northwestern University Medical School Chicago, Illinois 60611

Abstract

Although the electrophysiological properties of intramural ventricular myocardial cells are important to an understanding of cardiac excitation and conduction, they have not been well defined. The paucity of information stems from limitations on the depth of penetration by glass microelectrodes and from difficulties in perfusing the deep layers. Therefore, a tissue slicing technique that satisfactorily exposes all the layers of a papillary muscle specimen from the endocardium to the epicardium was developed for electrophysiological examination. Glass microelectrodes were then used to explore these slice preparations to define the electrophysiological characteristics of intramural cells in the normal dog. Transmem-brane potentials recorded from subendocardial and deep myocardial cells in the papillary muscle slices were comparable to those recorded from standard preparations. Similarities included action potential duration and configuration, relationships among resting potential, action potential configuration, and extracellular potassium concentration, and dependency of action potential duration on cycle length. However, the average magnitudes of measured electrophysiological characteristics were consistently greater in the subsurface cells tested in papillary muscle slices than they were in the surface cells tested in the standard preparations, i.e., resting potential was 2-4 my more negative, action potential amplitude was 7-9 my larger, and maximum rate of voltage change (maximum dV/dt) was 40-140 v/sec larger. Deep myocardial tissues also exhibited enhanced responsiveness (the curve relating activation potential to maximum dV/dt of the response shifted up and to the left), cell populations with large maximum dV/dt, and estimated conduction velocities in excess of three times those in the surface cell layers. These findings provide a reasonable explanation for (1) discrepancies between previously reported values for ventricular conduction velocity, (2) rapid impulse spread to the papillary muscle tip, and (3) bidirectional activation of the papillary muscle and large trabeculae. They also suggest the possibility of functional pathways that facilitate rapid activation of the deep myocardial lavers.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference53 articles.

1. The normal membrane potential of frog sartorius fibers

2. GEDDES L.A.: Electrodes and the Measurement of Bioelectric Events. New York Wiley-lnterscience 1972 p 364.

3. Spread of activation in the left ventricular wall of the dog. I.

4. Excitation of the heart. In Handbook of Physiology, Sec. 2, vol. 1, Circulation, edited by W. F. Hamilton and P. Dow. Washington, D. C;SCHER A.M.;American Physiological Society,1965

5. EXCITATION OF THE LEFT VENTRICULAR WALL OF THE DOG AND GOAT

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3