Abstract
The microelectrode technique of intracellular constant current application and intracellular transmembrane voltage recording was used to study the effects of procaine amide (PA) on cardiac excitability. We measured the effect of PA in a concentration equivalent to clinically effective antiarrhythmic plasma levels (5 mug/ml), on nonnormalized and normalized strength-duration and charge-duration curves, membrane characteristics, and cable properties in long sheep Purkinje fibers in normal Tyrode's solution with [K+]0 = 4.0 mM. PA exerted a complex action and influenced passive resistance-capacitance (RC) and active generator properties by decreasing membrane conductance, primarily membrane sodium conductance. Whether PA increased or decreased excitability depended on the relative contribution of the drug-induced alterations in passive and active membrane properties. These findings may explain, in part, the conflicting results of studies on cardiac excitability in the whole animal, as well as the clinical observation that PA may exert both artiarrhythmic and arrhythmogenic effects. The primary mechanism by which PA modifies excitability would seem to differ considerably from that of the structurally similar local anesthetic agent lidocaine.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献