Abstract
There is evidence that hypersensitivity of vascular muscle to neurotransmitters contributes to the development of hypertension. Comparison of the caudal arteries of spontaneously hypertensive rats (SHR) and their genetically related Kyoto-Wistar normotensive control rats (KNR) showed that although there is no difference in membrane potential under unstimulated conditions, greater depolarization of the SHR vascular muscle cells by norepinephrine occurs at concentrations which cause greater contraction. The mechanism for the increased depolarization and resulting increase in contraction appears to be a lower intracellular potassium ion activity in SHR vascular muscle cells, which results in a lower contribution of potassium gradient to membrane potential. Experiments to determine the sensitivity of isolated, dispersed chick omphalomesenteric vascular muscle cells to neurotransmitters showed remarkably low thresholds to the neutransmitters norepinephrine, serotonin, and acetylcholine, but not potassium chloride. The high sensitivity of isolated cells to neurotransmitters suggests that factors in the intact vessel may cause thresholds to be high, possibly implying that alterations in a neurotrophic mechanism might be responsible for changes in vascular muscle sensitivity in situ.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献