NADPH Oxidase Plays a Central Role in Blood-Brain Barrier Damage in Experimental Stroke

Author:

Kahles Timo1,Luedike Peter1,Endres Matthias1,Galla Hans-Joachim1,Steinmetz Helmuth1,Busse Rudi1,Neumann-Haefelin Tobias1,Brandes Ralf P.1

Affiliation:

1. From the Institut für Kardiovaskuläre Physiologie (T.K., P.L., R.B., R.P.B.) and Klinik für Neurologie (T.K., H.S., T.N.-H.), Klinikum und Fachbereich Medizin der J.W. Goethe Universität, Frankfurt am Main; Klinik und Poliklinik für Neurologie (M.E.), Charite Campus Mitte, Berlin; and Institut für Biochemie (H.-J.G.), Westfälische Wilhelms Universität Münster, Münster, Germany.

Abstract

Background and Purpose— Cerebral ischemia/reperfusion is associated with reactive oxygen species (ROS) generation, and NADPH oxidases are important sources of ROS. We hypothesized that NADPH oxidases mediate blood-brain barrier (BBB) disruption and contribute to tissue damage in ischemia/reperfusion. Methods— Ischemia was induced by filament occlusion of the middle cerebral artery in mice for 2 hours followed by reperfusion. BBB permeability was measured by Evans blue extravasation. Monolayer permeability was determined from transendothelial electrical resistance of cultured porcine brain capillary endothelial cells. Results— BBB permeability was increased in the ischemic hemisphere 1 hour after reperfusion. In NADPH oxidase–knockout (gp91phox −/− ) mice, middle cerebral artery occlusion–induced BBB disruption and lesion volume were largely attenuated compared with those in wild-type mice. Inhibition of NADPH oxidase by apocynin prevented BBB damage. In porcine brain capillary endothelial cells, hypoxia/reoxygenation induced translocation of the NADPH oxidase activator Rac-1 to the membrane. In vivo inhibition of Rac-1 by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin or Clostridium difficile lethal toxin B also prevented the ischemia/reperfusion–induced BBB disruption. Stimulation of porcine brain capillary endothelial cells with H 2 O 2 increased permeability, an effect attenuated by inhibition of phosphatidyl inositol 3-kinase or c -Jun N -terminal kinase but not blockade of extracellular signal–regulated kinase-1/2 or p38 mitogen-activated protein kinase. Inhibition of Rho kinase completely prevented the ROS-induced increase in permeability and the ROS-induced polymerization of the actin cytoskeleton. Conclusions— Activation of Rac and subsequently of the gp91phox containing NADPH oxidase promotes cerebral ROS formation, which then leads to Rho kinase–mediated endothelial cell contraction and disruption of the BBB. Inhibition of NAPDH oxidase is a promising approach to reduce brain injury after stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3