Reverse Regulation of Endothelial Cells and Myointimal Hyperplasia on Cell Proliferation by a Heatshock Protein-Coinducer After Hypoxia

Author:

Denes Laszlo1,Bori Zoltan1,Csonka Eva1,Entz Laszlo1,Nagy Zoltan1

Affiliation:

1. From the National Stroke Centre (L.D., Z.B., E.C., Z.N.), National Institute of Psychiatry and Neurology, Section of Vascular Neurology; Department of Vascular Surgery (L.E.), Semmelweis University, Budapest, Hungary.

Abstract

Background and Purpose— Myointimal hyperplasia (MIH) cells are related to permanent upregulated proliferation as tumor-like cells. The aim of this study is to assess whether treatment of cells after hypoxia by Iroxanadine heat-shock protein (HSP-coinducer) predicts recovery through cell proliferation. Methods— Vascular smooth muscle cells (VSMC) and brain capillary endothelial cells (HBEC) were isolated from human origin and MIH-cells from early carotid restenosis after surgery. Cell proliferation was quantified by bromuridine (BrdU) incorporation after hypoxia/reoxygenation. HSP72 and cyclin-dependent kinase (CDKN1A) mRNA expression was assessed by reverse transcription-polymerase chain reaction (PCR) and cell cycle distribution by flow cytometry (FACS) analysis. Results— After hypoxia/reoxygenation, the proliferation of MIH-cells increased, whereas endothelial cells decreased (MIH: 0.266±0.016 versus 0.336±0.024; P <0.05; HBEC: 1.249±0.10 versus 0.878±0.11; P <0.05). Whereas augmented proliferation of MIH-cells was reduced (40% to 45%) by HSP-coinducer, diminished HBEC proliferation increased (46.2%). Stress-activated-protein-kinase (SAPK)p38-dependent cell cycle redistribution was generated by an increase in HSP72 and CDKN1A mRNA levels in MIH-cells. Conclusions— The 2 key players of early restenosis (MIH, EC) were oppositely regulated and correspondingly after treatment by HSP-coinducer reverse recovered. Drug candidate may have therapeutic potential in (re)restenosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Exercise and Metabolic Disorders on Heat Shock Proteins and Vascular Inflammation;Autoimmune Diseases;2012

2. Restenosis and Therapy;International Journal of Vascular Medicine;2012

3. HSP, Exercise and Skeletal Muscle;Heat Shock Proteins and Whole Body Physiology;2009-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3