Activation of the Central Renin-Angiotensin System Causes Local Cerebrovascular Dysfunction

Author:

De Silva T. Michael12ORCID,Modrick Mary L.1,Grobe Justin L.34ORCID,Faraci Frank M.13ORCID

Affiliation:

1. Department of Internal Medicine (T.M.D.S., M.L.M., F.M.F.), Francois M. Abboud Cardiovascular Center, University of Iowa Carver College of Medicine.

2. Department of Physiology, Anatomy, and Microbiology (T.M.D.S.), School of Life Sciences, La Trobe University, Victoria, Australia.

3. Department of Neuroscience and Pharmacology (J.L.G., F.M.F.), Francois M. Abboud Cardiovascular Center, University of Iowa Carver College of Medicine.

4. Department of Physiology and Biomedical Engineering (J.L.G.), Cardiovascular Center, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee.

Abstract

Background and Purpose: Hypertension is a leading risk factor for cerebrovascular disease and loss of brain health. While the brain renin-angiotensin system (RAS) contributes to hypertension, its potential impact on the local vasculature is unclear. We tested the hypothesis that activation of the brain RAS would alter the local vasculature using a modified deoxycorticosterone acetate (DOCA) model. Methods: C57BL/6 mice treated with DOCA (50 mg SQ; or shams) were given tap H 2 O and H 2 O with 0.9% NaCl for 1 to 3 weeks. Results: In isolated cerebral arteries and parenchymal arterioles from DOCA-treated male mice, endothelium- and nitric oxide-dependent dilation was progressively impaired, while mesenteric arteries were unaffected. In contrast, cerebral endothelial function was not significantly affected in female mice treated with DOCA. In males, mRNA expression of renal Ren1 was markedly reduced while RAS components (eg, Agt and Ace ) were increased in both brain and cerebral arteries with central RAS activation. In NZ44 reporter mice expressing GFP (green fluorescent protein) driven by the angiotensin II type 1A receptor ( Agtr1a ) promoter, DOCA increased GFP expression ≈3-fold in cerebral arteries. Impaired endothelial responses were restored to normal by losartan, an AT1R (angiotensin II type 1 receptor) antagonist. Last, DOCA treatment produced inward remodeling of parenchymal arterioles. Conclusions: These findings suggest activation of the central and cerebrovascular RAS impairs endothelial (nitric oxide dependent) signaling in brain through expression and activation of AT1R and sex-dependent effects. The central RAS may be a key contributor to vascular dysfunction in brain in a preclinical (low renin) model of hypertension. Because the brain RAS is also activated during aging and other diseases, a common mechanism may promote loss of endothelial and brain health despite diverse cause.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3