THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) Mutation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage

Author:

Santiago-Sim Teresa1,Fang Xiaoqian1,Hennessy Morgan L.1,Nalbach Stephen V.1,DePalma Steven R.1,Lee Ming Sum1,Greenway Steven C.1,McDonough Barbara1,Hergenroeder Georgene W.1,Patek Kyla J.1,Colosimo Sarah M.1,Qualmann Krista J.1,Hagan John P.1,Milewicz Dianna M.1,MacRae Calum A.1,Dymecki Susan M.1,Seidman Christine E.1,Seidman J.G.1,Kim Dong H.1

Affiliation:

1. From the Department of Neurosurgery (T.S.-S., X.F., G.W.H., K.J.P., S.M.C., K.J.Q., J.P.H., D.H.K.) and Division of Medical Genetics, Department of Internal Medicine (D.M.M.), The University of Texas Medical School at Houston; Department of Genetics, Harvard Medical School, Boston, MA (M.L.H., S.V.N., S.R.D., S.C.G., B.M., S.M.D., C.E.S., J.G.S.); Department of Neurosurgery (S.V.N.), Department of Medicine (M.S.L., C.A.M.), and Cardiovascular Division (C.E.S.), Brigham and Women’s Hospital, Boston,...

Abstract

Background and Purpose— A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage. This study seeks to define a specific gene whose mutation leads to disease. Methods— More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 (thrombospondin type 1 domain containing protein 1) mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses and functional studies performed using an in vitro endothelial cell model. Results— A nonsense mutation in THSD1 was identified that segregated with the 9 affected (3 suffered subarachnoid hemorrhage and 6 had unruptured IA) and was absent in 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered subarachnoid hemorrhage (1.6% [95% confidence interval, 0.8%–3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89 040 chromosomes in Exome Aggregation Consortium (ExAC) database ( P <0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. Conclusions— This report identifies THSD1 mutations in familial and sporadic IA patients and shows that THSD1 loss results in cerebral bleeding in 2 animal models. This finding provides new insight into IA and subarachnoid hemorrhage pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3