Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling

Author:

Harston George W.J.1,Okell Thomas W.1,Sheerin Fintan1,Schulz Ursula1,Mathieson Phil1,Reckless Ian1,Shah Kunal1,Ford Gary A.1,Chappell Michael A.1,Jezzard Peter1,Kennedy James1

Affiliation:

1. From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of...

Abstract

Background and Purpose— Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CBF) without the need for exogenous contrast. The aim of this study was to explore the relationship between dynamic CBF and tissue outcome in the month after stroke onset. Methods— Patients with nonlacunar ischemic stroke underwent ≤5 repeated magnetic resonance imaging scans at presentation, 2 hours, 1 day, 1 week, and 1 month. Imaging included vessel-encoded pseudocontinuous arterial spin labeling using multiple postlabeling delays to quantify CBF in gray matter regions of interest. Receiver–operator characteristic curves were used to predict tissue outcome using CBF. Repeatability was assessed in 6 healthy volunteers and compared with contralateral regions of patients. Diffusion-weighted and T2-weighted fluid attenuated inversion recovery imaging were used to define tissue outcome. Results— Forty patients were included. In contralateral regions of patients, there was significant variation of CBF between individuals, but not between scan times (mean±SD: 53±42 mL/100 g/min). Within ischemic regions, mean CBF was lowest in ischemic core (17±23 mL/100 g/min), followed by regions of early (21±26 mL/100 g/min) and late infarct growth (25±35 mL/100 g/min; ANOVA P <0.0001). Between patients, there was marked overlap in presenting and serial CBF values. Conclusions— Knowledge of perfusion dynamics partially explained tissue fate. Factors such as metabolism and tissue susceptibility are also likely to influence tissue outcome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3