Selective Reduction of Blood Flow to White Matter During Hypercapnia Corresponds With Leukoaraiosis

Author:

Mandell Daniel M.1,Han Jay S.1,Poublanc Julien1,Crawley Adrian P.1,Kassner Andrea1,Fisher Joseph A.1,Mikulis David J.1

Affiliation:

1. From the Department of Medical Imaging (D.M.M., J.P., A.P.C.), Toronto Western Hospital, Toronto, Ontario, Canada; the Departments of Medical Imaging (D.M.M., A.K.) and Physiology (J.S.H., J.A.F.), University of Toronto, Toronto, Ontario, Canada; the Department of Anesthesia (J.S.H., J.A.F.), Toronto General Hospital, Toronto, Ontario, Canada; and the Department of Medical Imaging (A.K.), Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Background and Purpose— Age-related white matter disease (leukoaraiosis) clusters in bands in the centrum semiovale, about the occipital and frontal horns of the lateral ventricles, in the corpus callosum, and internal capsule. Cerebrovascular anatomy suggests that some of these locations represent border zones between arterial supply territories. We hypothesized that there are zones of reduced cerebrovascular reserve (susceptible to selective reductions in blood flow, ie, steal phenomenon) in the white matter of young, healthy subjects, the physiological correlate of these anatomically defined border zones. Furthermore, we hypothesized that these zones spatially correspond with the regions where the elderly develop leukoaraiosis. Methods— Twenty-eight healthy volunteers underwent functional MR mapping of the cerebrovascular response to hypercapnia. We studied 18 subjects by blood oxygen level-dependent MRI and 10 subjects by arterial spin labeling MRI. We controlled both end-tidal p co 2 and p o 2 . All functional data was registered in Montreal Neurological Institute space and generated composite blood oxygen level-dependent MR and arterial spin labeling MR maps of cerebrovascular reserve. We compared these maps with frequency maps of leukoaraiosis published previously. Results— Composite maps demonstrated significant (90% CI excluding the value zero) steal phenomenon in the white matter. This steal was induced by relatively small changes in end-tidal p co 2 . It occurred precisely in those locations where elderly patients develop leukoaraiosis. Conclusions— This steal phenomenon likely represents the physiological correlate of the previously anatomically defined internal border zones. Spatial concordance with white matter changes in the elderly raises the possibility that this steal phenomenon may have a pathogenetic role.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3