PRERISK: A Personalized, Artificial Intelligence–Based and Statistically–Based Stroke Recurrence Predictor for Recurrent Stroke

Author:

Colangelo Giorgio12ORCID,Ribo Marc13ORCID,Montiel Estefanía2,Dominguez Didier4ORCID,Olivé-Gadea Marta13,Muchada Marian13ORCID,Garcia-Tornel Álvaro13ORCID,Requena Manuel13ORCID,Pagola Jorge13ORCID,Juega Jesús13ORCID,Rodriguez-Luna David13ORCID,Rodriguez-Villatoro Noelia13,Rizzo Federica13ORCID,Taborda Belén13,Molina Carlos A.13ORCID,Rubiera Marta13ORCID

Affiliation:

1. Vall d’Hebron Research Institute, Passeig de la Vall d’Hebron, Barcelona, Spain (G.C., M. Ribo, M.O.-G., M.M., Á.G.-T., M. Requena, J.P., J.J., D.R.-L., N.R.-V., F.R., B.T., C.A.M., M. Rubiera).

2. Nora Health, Passeig de la Vall d’Hebron, Barcelona, Spain (G.C., E.M.).

3. Hospital Universitari Vall d’Hebron, Stroke Unit, Neurology Department, Passeig de la Vall d’Hebron, Barcelona, Spain (M. Ribo, M.O.-G., M.M., Á.G.-T., M. Requena, J.P., J.J., D.R.-L., N.R.-V., F.R., B.T., C.A.M., M. Rubiera).

4. Programa d’Analítica de Dades per a la Recerca i la Innovació en Salut, Agència de Qualitat i Avaluació Sanitàries de Catalunya, Departament de Salut, Generalitat de Catalunya, Carrer de Roc Boronat, Barcelona, Spain (D.D.).

Abstract

BACKGROUND: Predicting stroke recurrence for individual patients is difficult, but individualized prediction may improve stroke survivors’ engagement in self-care. We developed PRERISK: a statistical and machine learning classifier to predict individual risk of stroke recurrence. METHODS: We analyzed clinical and socioeconomic data from a prospectively collected public health care–based data set of 41 975 patients admitted with stroke diagnosis in 88 public health centers over 6 years (2014–2020) in Catalonia-Spain. A new stroke diagnosis at least 24 hours after the index event was considered as a recurrent stroke, which was considered as our outcome of interest. We trained several supervised machine learning models to provide individualized risk over time and compared them with a Cox regression model. Models were trained to predict early, late, and long-term recurrence risk, within 90, 91 to 365, and >365 days, respectively. C statistics and area under the receiver operating characteristic curve were used to assess the accuracy of the models. RESULTS: Overall, 16.21% (5932 of 36 114) of patients had stroke recurrence during a median follow-up of 2.69 years. The most powerful predictors of stroke recurrence were time from previous stroke, Barthel Index, atrial fibrillation, dyslipidemia, age, diabetes, and sex, which were used to create a simplified model with similar performance, together with modifiable vascular risk factors (glycemia, body mass index, high blood pressure, cholesterol, tobacco dependence, and alcohol abuse). The areas under the receiver operating characteristic curve were 0.76 (95% CI, 0.74–0.77), 0.60 (95% CI, 0.58–0.61), and 0.71 (95% CI, 0.69–0.72) for early, late, and long-term recurrence risk, respectively. The areas under the receiver operating characteristic curve of the Cox risk class probability were 0.73 (95% CI, 0.72–0.75), 0.59 (95% CI, 0.57–0.61), and 0.67 (95% CI, 0.66–0.70); machine learning approaches (random forest and AdaBoost) showed statistically significant improvement ( P <0.05) over the Cox model for the 3 recurrence time periods. Stroke recurrence curves can be simulated for each patient under different degrees of control of modifiable factors. CONCLUSIONS: PRERISK is a novel approach that provides a personalized and fairly accurate risk prediction of stroke recurrence over time. The model has the potential to incorporate dynamic control of risk factors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3