Optimizing Emergency Stroke Transport Strategies Using Physiological Models

Author:

Paydarfar Daniel A.1ORCID,Paydarfar David2,Mucha Peter J.1ORCID,Chang Joshua23ORCID

Affiliation:

1. Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics (D.A.P., P.J.M.), University of North Carolina, Chapel Hill.

2. Departments of Neurology (D.P., J.C.), Dell Medical School, Mulva Clinic for the Neurosciences and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin.

3. Population Health (J.C.), Dell Medical School, Mulva Clinic for the Neurosciences and Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin.

Abstract

Background and Purpose: The criteria for choosing between drip and ship and mothership transport strategies in emergency stroke care is widely debated. Although existing data-driven probability models can inform transport decision-making at an epidemiological level, we propose a novel mathematical, physiologically derived framework that provides insight into how patient characteristics underlying infarct core growth influence these decisions. Methods: We represent the physiology of time-dependent infarct core growth within an ischemic penumbra as an exponential function with consideration to rate-determining collateral blood flow. Monte Carlo methods generate distributions of infarct core volumes, which are translated to distributions of 90-day modified Rankin Scale scores. We apply the model to a stroke network that serves rural Bastrop County and urban Travis County by simulating transport strategies from thousands of potential patient pickup locations. In every pickup location, the simulation yields a distribution of outcomes corresponding to each transport strategy. A 2-sample Kolmogorov-Smirnov test and Student t test determine which transport strategy provides a significantly better probability of a good outcome for a given pickup location in each respective county ( P <0.01). Results: In Travis County, drip and ship provides significantly better probabilities of a good outcome in 24.0% of the pickup locations, while 59.8% favor mothership. In Bastrop County, 11.3% of the pickup locations favor drip and ship, while only 7.1% favor mothership. The remaining pickup locations in each county are not statistically significant in either direction. We also reveal how differing rates of infarct core growth, the application of bypass policies, and the use of large vessel occlusion field tests impact these results. Conclusions: Modeling stroke physiology enables the use of clinically relevant metrics for determining comparative significance between drip and ship and mothership in a given geography. This formalism can help understand and inform emergency medical service transport decision-making, as well as regional bypass policies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3