Translating Functional Connectivity After Stroke: Functional Magnetic Resonance Imaging Detects Comparable Network Changes in Mice and Humans

Author:

Blaschke Stefan J.123ORCID,Hensel Lukas13ORCID,Minassian Anuka2,Vlachakis Susan12ORCID,Tscherpel Caroline13,Vay Sabine U.1ORCID,Rabenstein Monika12ORCID,Schroeter Michael123,Fink Gereon R.13ORCID,Hoehn Mathias3,Grefkes Christian123ORCID,Rueger Maria A.123ORCID

Affiliation:

1. Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Germany (S.J.B., L.H., S.V., C.T., S.U.V., M.R., M.S., G.R.F., C.G., M.A.R.).

2. In-Vivo NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany (S.J.B., A.M., S.V., M.R., M.S., M.H., C.G., M.A.R.).

3. Cognitive Neuroscience Section, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Germany (S.J.B., L.H., C.T., M.S., G.R.F., M.H., C.G., M.A.R.).

Abstract

Background and Purpose: The translational roadblock has long impeded the implementation of experimental therapeutic approaches for stroke into clinical routine. Considerable interspecies differences, for example, in brain anatomy and function, render comparisons between rodents and humans tricky, especially concerning brain reorganization and recovery of function. We tested whether stroke-evoked changes in neural networks follow similar patterns in mice and patients using a systems-level perspective. Methods: We acquired resting-state functional magnetic resonance imaging data during the early poststroke phase in a sample of human patients and compared the observed network changes with data from 2 mouse stroke models, that is, photothrombosis and distal middle cerebral artery occlusion. Importantly, data were subjected to the same processing steps, allowing a direct comparison of global network changes using graph theory. Results: We found that network parameters computed for both mouse models of stroke and humans follow a similar pattern in the postacute stroke phase. Parameters indicating the global communication structure’s facilitation, such as small worldness and characteristic path length, were similarly changed in humans and mice in the first days after stroke. Additionally, small worldness correlated with concurrent motor impairment in humans. Longitudinal observation in the subacute phase revealed a negative correlation between initial small worldness and motor recovery in mice. Conclusions: We show that network measures based on resting-state functional magnetic resonance imaging data after stroke obtained in mice and humans share notable features. The observed network alterations could serve as therapeutic readout parameters for future translational studies in stroke research.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3