TREM (Triggering Receptor Expressed on Myeloid Cells)-1 Inhibition Attenuates Neuroinflammation via PKC (Protein Kinase C) δ/CARD9 (Caspase Recruitment Domain Family Member 9) Signaling Pathway After Intracerebral Hemorrhage in Mice

Author:

Lu Qin12ORCID,Liu Rui342,Sherchan Prativa2,Ren Reng2ORCID,He Wei25,Fang Yuanjian32ORCID,Huang Yi32ORCID,Shi Hui26,Tang Lihui32ORCID,Yang Shuxu1ORCID,Zhang John H.278ORCID,Tang Jiping2ORCID

Affiliation:

1. Department of Neurosurgery, Sir Run Run Shaw Hospital (Q.L., S.Y.), School of Medicine, Zhejiang University, Hangzhou, China.

2. Department of Physiology and Pharmacology (Q.L., R.L., P.S., R.R., W.H., Y.F., Y.H., H.S., L.T., J.H.Z., J.T.), Loma Linda University, CA.

3. Department of Neurosurgery, The Second Affiliated Hospital (R.R., Y.F., Y.H., L.T.), School of Medicine, Zhejiang University, Hangzhou, China.

4. Department of Neurology, Guizhou Provincial People’s Hospital, Guiyang, China (R.L.).

5. Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (W.H.).

6. Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, China (H.S.).

7. Department of Neurosurgery (J.H.Z.), Loma Linda University, CA.

8. Department of Anesthesiology (J.H.Z.), Loma Linda University, CA.

Abstract

Background and Purpose: Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high mortality and disability. Inflammatory response promotes secondary brain injury after ICH. TREM (triggering receptor expressed on myeloid cells)-1 is a key regulator of inflammation. The aim of this study was to evaluate the role of TREM-1 in neuroinflammatory response after ICH in mice. Methods: CD1 mice (n=275) were used in this study. Mice were subjected to ICH by autologous blood injection. TREM-1 knockout CRISPR was administered intracerebroventricularly to evaluate the role of TREM-1 after ICH. A selective TREM-1 inhibitor, LP17, was administered intranasally 2 hours after ICH. To elucidate TREM-1 signaling pathway, CARD9 (caspase recruitment domain family member 9) activation CRISPR was administered with LP17 and TREM-1 activating anti-mouse TREM-1 monoclonal antibody (mAb) was administered with Rottlerin, a specific PKC (protein kinase C) δ inhibitor. Lastly, to evaluate the role of HMGB1 (high-mobility group box 1) in TREM-1 mediated microglia activation, glycyrrhizin, an inhibitor of HMBG1 was administered with TREM-1 activating mAb. Neurobehavioral test, brain water content, Western blot, immunofluorescence staining, and coimmunoprecipitation was performed. Results: TREM-1 knockout reduced ICH-induced neurobehavioral deficits and neuroinflammatory response. The temporal expression of HMGB1, TREM-1, PKC δ, and CARD9 increased after ICH. TREM-1 was expressed on microglia. Intranasal administration of LP17 significantly decreased brain edema and improved neurobehavioral outcomes at 24 and 72 hours after ICH. LP17 promoted M2 microglia polarization and reduced proinflammatory cytokines after ICH, which was reversed with CARD9 activation CRISPR. TREM-1 mAb increased neurobehavior deficits, proinflammatory cytokines, and reduced M2 microglia after ICH, which was reversed with Rottlerin. HMBG1 interaction with TREM-1 increased after ICH, and glycyrrhizin reduced neuroinflammation and promoted M2 microglia which was reversed with TREM-1 mAb. Conclusions: This study demonstrated that TREM-1 enhanced neuroinflammation by modulating microglia polarization after ICH, and this regulation was partly mediated via PKC δ/CARD9 signaling pathway and increased HMGB1 activation of TREM-1.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3