Unique Subtype of Microglia in Degenerative Thalamus After Cortical Stroke

Author:

Cao Zhijuan12ORCID,Harvey Sean S.12ORCID,Chiang Terrance12,Foltz Aulden G.12ORCID,Lee Alex G.3,Cheng Michelle Y.12ORCID,Steinberg Gary K.12ORCID

Affiliation:

1. Department of Neurosurgery (Z.C., S.S.H., T.C., A.G.F., M.Y.C., G.K.S.), Stanford University School of Medicine, CA.

2. Stanford Stroke Center (Z.C., S.S.H., T.C., A.G.F., M.Y.C., G.K.S.), Stanford University School of Medicine, CA.

3. Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco (A.G.L.).

Abstract

Background and Purpose: Stroke disrupts neuronal functions in both local and remotely connected regions, leading to network-wide deficits that can hinder recovery. The thalamus is particularly affected, with progressive development of neurodegeneration accompanied by inflammatory responses. However, the complexity of the involved inflammatory responses is poorly understood. Herein we investigated the spatiotemporal changes in the secondary degenerative thalamus after cortical stroke, using targeted transcriptome approach in conjunction with histology and flow cytometry. Methods: Cortical ischemic stroke was generated by permanent occlusion of the left middle cerebral artery in male C57BL6J mice. Neurodegeneration, neuroinflammatory responses, and microglial activation were examined in naive and stroke mice at from poststroke days (PD) 1 to 84, in both ipsilesional somatosensory cortex and ipsilesional thalamus. NanoString neuropathology panel (780 genes) was used to examine transcriptome changes at PD7 and PD28. Fluorescence activated cell sorting was used to collect CD11c + microglia from ipsilesional thalamus, and gene expressions were validated by quantitative real-time polymerase chain reaction. Results: Neurodegeneration in the thalamus was detected at PD7 and progressively worsened by PD28. This was accompanied by rapid microglial activation detected as early as PD1, which preceded the neurodegenerative changes. Transcriptome analysis showed higher number of differentially expressed genes in ipsilesional thalamus at PD28. Notably, neuroinflammation was the top activated pathway, and microglia was the most enriched cell type. Itgax (CD11c) was the most significantly increased gene, and its expression was highly detected in microglia. Flow-sorted CD11c + microglia from degenerative thalamus indicated molecular signatures similar to neurodegenerative disease–associated microglia; these included downregulated Tmem119 and CX3CR1 and upregulated ApoE, Axl, LpL, CSF1, and Cst7. Conclusions: Our findings demonstrate the dynamic changes of microglia after stroke and highlight the importance of investigating stroke network-wide deficits. Importantly, we report the existence of a unique subtype of microglia (CD11c + ) with neurodegenerative disease–associated microglia features in the degenerative thalamus after stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3