Deep Learning–Based Automated Thrombolysis in Cerebral Infarction Scoring: A Timely Proof-of-Principle Study

Author:

Nielsen Maximilian12ORCID,Waldmann Moritz3,Frölich Andreas M.3ORCID,Flottmann Fabian3ORCID,Hristova Evelin4,Bendszus Martin5,Seker Fatih5ORCID,Fiehler Jens3ORCID,Sentker Thilo12ORCID,Werner Rene12ORCID

Affiliation:

1. Department of Computational Neuroscience (M.N., T.S., R.W.), University Medical Center-Hamburg-Eppendorf, Germany.

2. Center for Biomedical Artificial Intelligence (bAIome) (M.N., T.S., R.W.), University Medical Center-Hamburg-Eppendorf, Germany.

3. Department of Diagnostic and Interventional Neuroradiology (M.W., A.M.F., F.F., J.F.), University Medical Center-Hamburg-Eppendorf, Germany.

4. Eppdata GmbH, Hamburg, Germany (E.H.).

5. Department of Neuroradiology, Heidelberg University Hospital, Germany (M.B., F.S.).

Abstract

Background and Purpose: Mechanical thrombectomy is an established procedure for treatment of acute ischemic stroke. Mechanical thrombectomy success is commonly assessed by the Thrombolysis in Cerebral Infarction (TICI) score, assigned by visual inspection of X-ray digital subtraction angiography data. However, expert-based TICI scoring is highly observer-dependent. This represents a major obstacle for mechanical thrombectomy outcome comparison in, for instance, multicentric clinical studies. Focusing on occlusions of the M1 segment of the middle cerebral artery, the present study aimed to develop a deep learning (DL) solution to automated and, therefore, objective TICI scoring, to evaluate the agreement of DL- and expert-based scoring, and to compare corresponding numbers to published scoring variability of clinical experts. Methods: The study comprises 2 independent datasets. For DL system training and initial evaluation, an in-house dataset of 491 digital subtraction angiography series and modified TICI scores of 236 patients with M1 occlusions was collected. To test the model generalization capability, an independent external dataset with 95 digital subtraction angiography series was analyzed. Characteristics of the DL system were modeling TICI scoring as ordinal regression, explicit consideration of the temporal image information, integration of physiological knowledge, and modeling of inherent TICI scoring uncertainties. Results: For the in-house dataset, the DL system yields Cohen’s kappa, overall accuracy, and specific agreement values of 0.61, 71%, and 63% to 84%, respectively, compared with the gold standard: the expert rating. Values slightly drop to 0.52/64%/43% to 87% when the model is, without changes, applied to the external dataset. After model updating, they increase to 0.65/74%/60% to 90%. Literature Cohen’s kappa values for expert-based TICI scoring agreement are in the order of 0.6. Conclusions: The agreement of DL- and expert-based modified TICI scores in the range of published interobserver variability of clinical experts highlights the potential of the proposed DL solution to automated TICI scoring.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3