Resveratrol Preconditioning Protects Against Cerebral Ischemic Injury via Nuclear Erythroid 2–Related Factor 2

Author:

Narayanan Srinivasan V.1,Dave Kunjan R.1,Saul Isa1,Perez-Pinzon Miguel A.1

Affiliation:

1. From the Cerebral Vascular Disease Research Laboratories (S.V.N., K.R.D., I.S., M.A.P.-P.), Neuroscience Program (S.V.N., K.R.D., M.A.P.-P.), and Department of Neurology (S.V.N., K.R.D., I.S., M.A.P.-P.), University of Miami Miller School of Medicine, FL; and University of Miami Miller School of Medicine MD/PhD Program (S.V.N.).

Abstract

Background and Purpose— Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. Although resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species production after cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function. Methods— We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. After RPC, mitochondrial function was determined by measuring reactive oxygen species production and mitochondrial respiration in both wild-type and Nrf2 −/− mice. Infarct volume was measured to determine neuroprotection, whereas protein levels were measured by immunoblotting. Results— We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2 −/− cortical mitochondria exhibited increased uncoupling and reactive oxygen species production after RPC treatments. Finally, Nrf2 −/− astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants after RPC treatment. Conclusions— Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3