Medial Premotor Cortex Shows a Reduction in Inhibitory Markers and Mediates Recovery in a Mouse Model of Focal Stroke

Author:

Zeiler Steven R.1,Gibson Ellen M.1,Hoesch Robert E.1,Li Ming Y.1,Worley Paul F.1,O’Brien Richard J.1,Krakauer John W.1

Affiliation:

1. From the Department of Neurology (S.R.Z., E.M.G., M.Y.L., P.F.W., R.J.O.B., J.W.K.) and Department of Neuroscience (P.F.W., J.W.K.), Johns Hopkins University, Baltimore, MD; and Department of Neurology, University of Utah, Salt Lake City, UT (R.E.H.)

Abstract

Background and Purpose— Motor recovery after ischemic stroke in primary motor cortex is thought to occur in part through training-enhanced reorganization in undamaged premotor areas, enabled by reductions in cortical inhibition. Here we used a mouse model of focal cortical stroke and a double-lesion approach to test the idea that a medial premotor area (medial agranular cortex [AGm]) reorganizes to mediate recovery of prehension, and that this reorganization is associated with a reduction in inhibitory interneuron markers. Methods— C57Bl/6 mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent photocoagulation-induced stroke in the caudal forelimb area. The mice were then retrained and inhibitory interneuron immunofluorescence was assessed in prechosen, anatomically defined neocortical areas. Mice then underwent a second photocoagulation-induced stroke in AGm. Results— Focal caudal forelimb area stroke led to a decrement in skilled prehension. Training-associated recovery of prehension was associated with a reduction in parvalbumin, calretinin, and calbindin expression in AGm. Subsequent infarction of AGm led to reinstatement of the original deficit. Conclusions— We conclude that with training, AGm can reorganize after a focal motor stroke and serve as a new control area for prehension. Reduced inhibition may represent a marker for reorganization or it is necessary for reorganization to occur. Our mouse model, with all of the attendant genetic benefits, may allow us to determine at the cellular and molecular levels how behavioral training and endogenous plasticity interact to mediate recovery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3