Vulnerability of the Developing Heart to Oxygen Deprivation as a Cause of Congenital Heart Defects

Author:

Kenchegowda Doreswamy1,Liu Hongbin2,Thompson Keyata3,Luo Liping2,Martin Stuart S.3,Fisher Steven A.132

Affiliation:

1. Department of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD

2. Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, OH

3. Department of Physiology, University of Maryland School of Medicine, Baltimore, MD

Abstract

Background The heart develops under reduced and varying oxygen concentrations, yet there is little understanding of oxygen metabolism in the normal and mal‐development of the heart. Here we used a novel reagent, the ODD ‐Luc hypoxia reporter mouse ( o xygen d egradation d omain, ODD ) of Hif‐1 α fused to Luciferase (Luc), to assay the activity of the oxygen sensor, prolyl hydroxylase, and oxygen reserve, in the developing heart. We tested the role of hypoxia‐dependent responses in heart development by targeted inactivation of Hif‐1 α. Methods and Results ODD ‐Luciferase activity was 14‐fold higher in mouse embryonic day 10.5 (E10.5) versus adult heart and liver tissue lysates. ODD ‐Luc activity decreased in 2 stages, the first corresponding with the formation of a functional cardiovascular system for oxygen delivery at E15.5, and the second after birth consistent with complete oxygenation of the blood and tissues. Reduction of maternal inspired oxygen to 8% for 4 hours caused minimal induction of luciferase activity in the maternal tissues but robust induction in the embryonic tissues in proportion to the basal activity, indicating a lack of oxygen reserve, and corresponding induction of a hypoxia‐dependent gene program. Bioluminescent imaging of intact embryos demonstrated highest activity in the outflow portion of the E13.5 heart. Hif‐1 α inactivation or prolonged hypoxia caused outflow and septation defects only when targeted to this specific developmental window. Conclusions Low oxygen concentrations and lack of oxygen reserve during a critical phase of heart organogenesis may provide a basis for vulnerability to the development of common septation and conotruncal heart defects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3