Effects of Hypothermia on the Rate of Excitatory Amino Acid Release After Ischemic Depolarization

Author:

Nakashima Ken1,Todd Michael M.1

Affiliation:

1. From the Neuroanesthesia Research Laboratory, Department of Anesthesia, University of Iowa College of Medicine (Iowa City). K.N. was a research fellow from the Critical Care Medical Center, Yamaguchi University, Ube, Yamaguchi, Japan.

Abstract

Background and Purpose Hypothermia slows the increase in extracellular excitatory amino acid (EAA) concentrations during temporary cerebral ischemia. However, it is unclear whether hypothermia slows the rate of EAA release or just delays the time until the first sharp increase (which occurs coincident with terminal depolarization). Methods Pericranial temperatures were adjusted to 38°C, 34°C, 31°C, or 25°C in halothane-anesthetized rats. The cortical DC voltage was recorded from a glass microelectrode while the cortical concentrations of glutamate, aspartate, glycine, and γ-aminobutyric acid (GABA) were measured by microdialysis. A cardiac arrest was induced with intravenous KCl, and the times until electroencephalograph isoelectricity and terminal depolarization were recorded. Dialysate concentrations of the four compounds were measured at 10, 20, and 30 minutes after depolarization. Results The times to isoelectricity and depolarization varied inversely with temperature; depolarization time increased from 70±9 seconds at 38°C (mean±SD) to 294±34 seconds at 25°C. The dialysate concentrations of all four compounds increased during ischemia, and the rate of increase was inhibited by cooling. After 30 minutes of ischemia, glutamate concentration in 38°C animals was 58.4±31.8 μmol/L; this decreased to 15.9±8.4 μmol/L at 25°C. The magnitude of the effects of temperature on amino acid release differed with the compound measured. For glutamate, the calculated Q10 was 3.63. Corresponding values for aspartate and glycine were 3.68 and 1.95, respectively. By contrast, Q10 for GABA release was 6.31, indicating greater sensitivity to cooling. Conclusions These results suggest that effects of hypothermia on EAA concentrations during cerebral ischemia may be the result of both a delay until initial EAA release as well as a direct effect of temperature on the rate of amino acid release. The observed temperature effects are more consistent with carrier-mediated processes controlling EAA release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3