Changes in extracellular glutamate concentration produced in the rat striatum by repeated ischemia.

Author:

Ueda Y1,Obrenovitch T P1,Lok S Y1,Sarna G S1,Symon L1

Affiliation:

1. Gough-Cooper Department of Neurological Surgery, Institute of Neurology, London, England.

Abstract

Evidence suggesting that ischemia-induced neuronal damage may be linked to an extracellular overflow of glutamate has accumulated, and previous studies have shown that repetitive ischemic insults may have a cumulative effect. The purpose of this study was to investigate changes in the extracellular glutamate concentration produced by repeated brief ischemic episodes of varied severity. Four consecutive 3- or 5-minute periods of bilateral hemispheric ischemia were produced in rats, each ischemic period followed by 27 minutes of reperfusion. Extracellular glutamate in the striatum was monitored using microdialysis, and the electroencephalogram and extracellular direct current potential were recorded in the same tissue site to assess the severity of ischemia. The results suggest that the kinetics of the increase in the extracellular glutamate concentration produced by a brief ischemic episode are similar, irrespective of whether it is a single insult or part of a repeated sequence. In all cases, the extracellular glutamate concentration increased throughout ischemia and returned to its preischemic level early during reperfusion. The pattern of changes in the ischemia-induced glutamate overflow during repetitive insults varied with the severity of ischemia, in common with the pattern of changes in the direct current potential, supporting the concept that ionic changes associated with anoxic depolarization are a major determinant of ischemia-induced glutamate overflow. There may be no cumulative effect of brief repeated episodes of ischemia on the extracellular glutamate concentration, even though repeated 5-minute ischemic episodes apparently caused progressive deterioration of ionic homeostasis in some cases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3