Relaxation of Subarachnoid HemorrhageInduced Spasm of Rabbit Basilar Artery by the K + Channel Activator Cromakalim

Author:

Zuccarello Mario1,Bonasso Christian L.1,Lewis Adam I.1,Sperelakis Nicholas1,Rapoport Robert M.1

Affiliation:

1. From the Departments of Neurosurgery (M.Z., C.L.B., A.I.L.), Molecular and Cellular Physiology (N.S.), and Pharmacology and Cell Biophysics (R.M.R.), University of Cincinnati College of Medicine, and Veterans Affairs Medical Center (M.Z., R.M.R.), Cincinnati, Ohio.

Abstract

Background and Purpose Cerebral vasospasm resulting from subarachnoid hemorrhage (SAH) is refractory to most vasodilators. However, despite evidence that a mechanism underlying the vasospasm may be smooth muscle cell membrane depolarization resulting from decreased K + conductance, the ability of K + channel activators to relax the spasm has not been thoroughly investigated. The purpose of this study, therefore, was to investigate whether K + channel activation selectively relaxes SAH-induced vasospasm. Methods Three days after SAH in the rabbit, relaxation of the basilar artery in response to the K + channel activator cromakalim as well as to staurosporine (protein kinase C antagonist), forskolin (adenylate cyclase activator), and sodium nitroprusside (guanylate cyclase activator) was measured in situ with the use of a cranial window. Relaxation in response to these agents was also investigated in control vessels contracted with serotonin. Membrane potential of the smooth muscle cells of the basilar artery from SAH and control rabbit was measured in vitro with the use of intracellular microelectrodes. Results Cromakalim completely relaxed the SAH-induced spastic basilar artery, while staurosporine, forskolin, and sodium nitroprusside were significantly less efficacious. In contrast, sodium nitroprusside and forskolin were more efficacious relaxants in serotonin-contracted control vessels than in SAH vessels. The K + channel blocker glyburide and high [K + ] prevented cromakalim-induced relaxation. Glyburide did not inhibit forskolin-induced relaxation of serotonin-contracted control vessels. Cromakalim concentration-dependently repolarized spastic basilar artery smooth muscle cells, and the repolarization was prevented by glyburide. Conclusions These results suggest that K + channel activation selectively relaxes SAH-induced vasospasm. We speculate that the ability of K + channel activators to selectively relax the spasm may be due, at least in part, to the underlying inhibition of K + channels after SAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3