Expression of Nerve Growth Factor and trkA After Transient Focal Cerebral Ischemia in Rats

Author:

Lee Tsong-Hai1,Kato Hiroyuki1,Chen Sien-Tsong1,Kogure Kyuya1,Itoyama Yasuto1

Affiliation:

1. From the Second Department of Neurology, Chang Gung Memorial Hospital, Taipei, Taiwan (T.-H.L., S.-T.C.); the Department of Neurology, Tohoku University School of Medicine, Sendai, Japan (H.K., Y.I.); and the Foundation for Brain and Nerve Diseases and the Institute of Neuropathology, Kumagaya, Japan (K.K.).

Abstract

Background and Purpose —In vitro studies have shown that nerve growth factor (NGF) is protective to cortical neurons against various insults. However, the role of NGF in relation to its high-affinity trkA receptor in the cortical neurons has not been well discussed. In this experiment, we studied the possible involvement of the NGF/receptor system in the ischemic injury of cortical neurons after focal cerebral ischemia in rats. Methods —Male Wistar rats received right middle cerebral artery occlusion of 90 minutes’ duration. The rats were decapitated at different reperfusion time points: hour 4 and days 1, 3, 7, and 14 of recirculation. Brain sections at the level of striatum were immunostained against NGF, trkA, glial fibrillary acidic protein (GFAP), and stress protein HSP70. Double immunostaining against NGF and GFAP was also performed. Optical density of NGF immunoreactivity in the ischemic and nonischemic cortexes was compared between sham-control and ischemic animals. Results —In the sham-control rats, NGF immunoreactivity was present in the cortical and striatal neurons. However, beginning at hour 4 after recirculation, there was a significant decrease of NGF in the ischemic cortex and striatum. Beginning at day 1, NGF was absent completely in the infarcted striatum and cortex. However, in the peri-infarct penumbra area, despite a decrease in NGF at hour 4 and day 1, NGF recovered beginning at day 3 and returned almost to the sham-control level at day 14. In the nonischemic cortex, NGF increased beginning at hour 4, peaked at day 7, and returned almost to the sham-control level at day 14. The trkA and HSP70 immunoreactivities were not present in the sham-control cortex. However, trkA was induced at hour 4 in the ischemic cortex and at days 1 and 3 in the peri-infarct penumbra cortex. The HSP70 was induced at days 1 and 3 in the peri-infarct penumbra area. Double immunostaining showed that the number of GFAP-positive cells increased gradually, and NGF immunoreactivity in the GFAP-positive cells became gradually intense after ischemia. Conclusions —Our study demonstrated a temporal profile of NGF and trkA in the ischemic cortex and NGF expression by reactive astrocytes. Our data suggest that the NGF/receptor system may play a role in the astrocyte/neuron interaction under certain pathological conditions, such as focal cerebral ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3