Protective effects of human recombinant superoxide dismutase on transient ischemic injury of CA1 neurons in gerbils.

Author:

Uyama O1,Matsuyama T1,Michishita H1,Nakamura H1,Sugita M1

Affiliation:

1. Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.

Abstract

It has been postulated that oxygen-derived free radicals are produced in significant quantities upon reperfusion of ischemic brain and that the free radicals play a pivotal role in triggering the ischemic neuronal damage causing delayed neuronal death. This study was undertaken to examine the effects of human recombinant superoxide dismutase on the delayed neuronal death of CA1 neurons and on the change in the expression of messenger ribonucleic acid for endogenous copper-zinc superoxide dismutase after transient ischemia. Human recombinant superoxide dismutase (8 x 10(5) units/kg) or apo-superoxide dismutase was administered intravenously 1 minute before bilateral carotid artery occlusion in gerbils divided among four experimental groups. Endogenous copper-zinc superoxide dismutase messenger ribonucleic acid was analyzed by in situ hybridization histochemistry using a sulfur-35-labeled oligonucleotide probe. Immunohistochemical localizations of administered human recombinant superoxide dismutase were investigated. All gerbils receiving apo-superoxide dismutase exhibited almost complete destruction of CA1 neurons 7 days after 5 minutes of ischemia. The gerbils treated with human recombinant superoxide dismutase showed mild lesions (p less than 0.01). Discrete localizations were observed for endogenous copper-zinc superoxide dismutase messenger ribonucleic acid. Transient ischemia increased labeling throughout the hippocampus after 30 minutes and 24 hours of reperfusion. This increase was abolished by treatment with human recombinant superoxide dismutase. This phenomenon was confirmed by Northern blot analysis. The interneurons in CA3 and cells in the hilus were mainly stained against administered superoxide dismutase at 5 and 30 minutes, and these reactions had disappeared at 20 hours after the administration. Our data demonstrate protective effects of human recombinant superoxide dismutase against ischemic neuronal damage and support the hypothesis that the generated free radicals induce a vicious cycle leading to delayed neuronal death.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Reference30 articles.

1. The basis of the free radical pathology;Demopoulos FB;Fed Proc,1973

2. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart

3. Effect of xanthine oxidase inhibition on renal circulation after ischemia;Hansson R;Transplant Proc,1982

4. Superoxide radicals in feline intestinal ischemia;Granger DN;Gastroenterology,1981

5. Superoxide dismutases;Tridovich I;Adv Enzymol,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3