Endothelium-derived nitric oxide synthase inhibition. Effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats.

Author:

Prado R1,Watson B D1,Kuluz J1,Dietrich W D1

Affiliation:

1. Cerebral Vascular Disease Research Center, University of Miami School of Medicine, FL 33101.

Abstract

We determined the effects of inhibiting the production of cerebral endothelium-derived nitric oxide on pial artery diameter, cortical blood flow, and vascular morphology. An inhibitor of endothelium-derived nitric oxide synthesis, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME), or an equivalent volume of 0.9% saline was infused into rats intra-arterially in a retrograde fashion via the right external carotid artery at a rate of 3 mg/kg/min to a total dose of 190 mg/kg or intravenously at 1 mg/kg/min to a total dose of 15 mg/kg. Large pial arteries were continuously visualized through an operating microscope, and cortical cerebral blood flow was monitored by laser-Doppler flowmetry. To localize areas of morphological interest, the protein tracer horseradish peroxidase was injected 15 minutes before termination of the L-NAME infusion and the rats were perfusion-fixed 15 minutes later for light and electron microscopic analysis. Infusion of L-NAME significantly raised arterial blood pressure at both doses (for 190 mg/kg, from 103.2 +/- 3.4 to 135 +/- 3.4 mm Hg; for 15 mg/kg, from 125 +/- 2.8 to 144.4 +/- 4.0 mm Hg). Pial arteries constricted within 10 minutes after the start of the intracarotid infusion to 40% of the preinfusion diameter, while cortical cerebral blood flow decreased to an average of 72.5% of that at baseline. Morphological abnormalities in the experimental rats included microvascular stasis and focal areas of blood-brain barrier disruption to protein. Ultrastructural examination of cortical leaky sites revealed constricted arterioles with many endothelial pinocytotic vesicles and microvilli. These observations suggest that inhibition of endothelium-derived nitric oxide synthesis affects the relation between cerebral arterial diameter and cerebral blood flow and can lead to subtle cerebral vascular pathological changes consistent with focal brain ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3