Neuronal network disturbance after focal ischemia in rats.

Author:

Kataoka K1,Hayakawa T1,Yamada K1,Mushiroi T1,Kuroda R1,Mogami H1

Affiliation:

1. Department of Neurosurgery, Osaka University Medical School, Japan.

Abstract

We studied functional disturbances following left middle cerebral artery occlusion in rats. Neuronal function was evaluated by [14C]2-deoxyglucose autoradiography 1 day after occlusion. We analyzed the mechanisms of change in glucose utilization outside the infarct using Fink-Heimer silver impregnation, axonal transport of wheat germ agglutinin-conjugated-horseradish peroxidase, and succinate dehydrogenase histochemistry. One day after occlusion, glucose utilization was remarkably reduced in the areas surrounding the infarct. There were many silver grains indicating degeneration of the synaptic terminals in the cortical areas surrounding the infarct and the ipsilateral cingulate cortex. Moreover, in the left thalamus where the left middle cerebral artery supplied no blood, glucose utilization significantly decreased compared with sham-operated rats. In the left thalamus, massive silver staining of degenerated synaptic terminals and decreases in succinate dehydrogenase activity were observed 4 and 5 days after occlusion. The absence of succinate dehydrogenase staining may reflect early changes in retrograde degeneration of thalamic neurons after ischemic injury of the thalamocortical pathway. Terminal degeneration even affected areas remote from the infarct: there were silver grains in the contralateral hemisphere transcallosally connected to the infarct and in the ipsilateral substantia nigra. Axonal transport study showed disruption of the corticospinal tract by subcortical ischemia; the transcallosal pathways in the cortex surrounding the infarct were preserved. The relation between neural function and the neuronal network in the area surrounding the focal cerebral infarct is discussed with regard to ischemic penumbra and diaschisis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3