Low Molecular Weight Iron in Cerebral Ischemic Acidosis In Vivo

Author:

Lipscomb Diane C.1,Gorman Linda G.1,Traystman Richard J.1,Hurn Patricia D.1

Affiliation:

1. From the Johns Hopkins Medical Institutions, Department of Anesthesiology and Critical Care Medicine, Baltimore, Md.

Abstract

Background and Purpose —Iron-catalyzed radical generation is a potentially significant mechanism by which extensive tissue acidosis exacerbates brain injury during ischemia/reperfusion. We hypothesized that levels of low-molecular-weight (LMW) iron increase during in vivo global cerebral ischemia in a pH-dependent manner, potentially catalyzing oxidant injury. The present study quantified regional differences in LMW iron during global cerebral incomplete ischemia and determined whether augmenting the fall in ischemic tissue pH with hyperglycemia also amplifies free iron availability. Methods —Dogs anesthetized with pentobarbital-fentanyl were treated with 30 minutes of global incomplete cerebral ischemia produced by intracranial pressure elevation. Cerebral energy metabolites (ATP, phosphocreatine) and intracellular pH (pH i ) were measured by 31 P magnetic resonance spectroscopy. Preischemic plasma glucose level was manipulated to titrate end-ischemic pH i . After ischemia, brains were perfused with cold phosphate-buffered saline solution; then 16 different brain areas were sampled, filtered to separate the LMW fraction (<30 000 D), and assayed by rapid colorimetric assay for tissue iron. Total iron, LMW iron, and protein in each sample were measured in sham-operated (no ischemia, n=8), normoglycemic ischemia (ISCH [glucose 7±4 mmol/L], n=7), and hyperglycemic (GLU-ISCH [glucose 31±3 mmol/L], n=9) groups. Results —High-energy phosphates fell to near zero values in both ISCH and GLU-ISCH groups by 30 minutes but remained unchanged in the sham-operated group. As expected, pH i decreased during ischemia but to a greater extent in GLU-ISCH (6.20±0.05 in ISCH, 6.08±0.04 in GLU-ISCH, P <.05). Iron could be detected in all areas of the brain in sham-operated animals, with the highest amounts obtained from subcortical areas such as the hippocampus, pons, midbrain, and medulla. Total iron was higher in ISCH relative to sham-operated animals and higher in cortex and pons relative to GLU-ISCH. Regional LMW (as a percentage of total iron; LMW/total iron) was elevated in numerous brain areas in ISCH, including cortical gray matter, cerebellum, hippocampus, caudate, and midbrain. LMW/total iron was higher in GLU-ISCH versus ISCH in cortical gray matter only. In other brain areas, ischemic LMW/total iron was equivalent in glucose-treated or normoglycemic animals (white matter, thalamus, pons, medulla) or lower in the glucose-treated group (cerebellum, hippocampus, caudate, midbrain). Conclusions —These data demonstrate that levels of total and LMW iron increase with global cerebral ischemia in the majority of cortical and subcortical regions of normoglycemic brain. However, exacerbation of ischemic acidosis via glucose administration does not increase tissue iron and produces a greater increase in the LMW fraction in cortical gray matter only. In other brain regions, total and LMW iron availability is similar to that of nonischemic animals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3