Nitric oxide and the cerebral circulation.

Author:

Faraci F M1,Brian J E1

Affiliation:

1. Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.

Abstract

Nitric oxide (NO) is a potent vasodilator that was initially described as the mediator of endothelium-dependent relaxation (endothelium-derived relaxing factor, EDRF). It is now known that NO is produced by a variety of other cell types. Endothelium produces NO (EDRF) under basal conditions and in response to a variety of vasoactive stimuli in large cerebral arteries and the cerebral microcirculation. Endothelium-dependent relaxation is impaired in the presence of several pathophysiological conditions. This impairment may contribute to cerebral ischemia or stroke. Activation of glutamate receptors appears to be a major stimulus for production of NO by neurons. Neuronally derived NO may mediate local increases in cerebral blood flow during increases in cerebral metabolism. NO synthase-containing neurons also innervate large cerebral arteries and cerebral arterioles on the brain surface. Activation of parasympathetic fibers that innervate cerebral vessels produces NO-dependent increases in cerebral blood flow. Increases in cerebral blood flow during hypercapnia also appear to be dependent on production of NO. Astrocytes may release some NO constitutively, but astrocytes and microglia can release relatively large quantities of NO after induction of NO synthase in response to endotoxin or some cytokines. Expression of inducible NO synthase, perhaps in response to local production of cytokines, may exert cytotoxic effects in brain during or after ischemia. Because endothelium, neurons, and glia can all produce NO in response to some stimuli, the influence of NO on the cerebral circulation appears to be very important. Under normal conditions, constitutively produced NO influences basal cerebral vascular tone and mediates vascular responses to a diverse group of stimuli. The inducible form of NO synthase produces much greater amounts of NO that may be an important mediator of cytotoxicity in brain.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 506 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3